Journal Information
Vol. 47. Issue S6.
Antibioterapia inhalada
Pages 8-13 (June 2011)
Share
Share
Download PDF
More article options
Vol. 47. Issue S6.
Antibioterapia inhalada
Pages 8-13 (June 2011)
Full text access
Infección bronquial crónica: el problema de Pseudomonas aeruginosa
Chronic bronchial infection: the problem of Pseudomonas aeruginosa
Visits
...
Rafael Cantón??
Corresponding author
rcanton.hrc@salud.madrid.org

Autor para correspondencia.
, Ana Fernández Olmos, Elia Gómez G. de la Pedrosa, Rosa Del Campo, María Antonia Meseguer
Servicio de Microbiología y CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, España
Article information
Resumen

La colonización patogénica broncopulmonar y las exacerbaciones que se derivan de ella constituyen las causas más importantes del deterioro de la función pulmonar en los pacientes con bronquiectasias. Haemophilus influezae y Pseudomonas aeruginosa son los patógenos más frecuentes en estos pacientes. El efecto lesivo se produce por el proceso de inflamación local y el círculo vicioso que se desarrolla por el estímulo antigénico, la liberación de mediadores de la inflamación, la presencia de neutrófilos, el aumento del inóculo bacteriano y la liberación de exoproductos bacterianos. Se ha demostrado que P. aeruginosa afecta a los pacientes con bronquiectasias con peor calidad de vida, coloniza a los que tienen peor funcionalidad pulmonar y mayor número de tratamientos antimicrobianos. En las bronquiectasias, al igual que en la enfermedad pulmonar obstructiva crónica (EPOC) o fibrosis quística, P. aeruginosa es capaz de colonizar crónicamente la mucosa respiratoria. Debido al nicho ecológico donde se sitúa P. aeruginosa y a la multitud de ciclos con antimicrobianos a los que son sometidos estos pacientes es fácil que se desarrollen resistencias a los antimicrobianos, favorecidas por la elevada proporción de variantes hipermutadoras que existen. Asimismo, hay que resaltar la forma natural de crecimiento en biopelículas de P. aeruginosa en la superficie mucosa y la contribución que ejerce para su persistencia. El tratamiento antimicrobiano en los pacientes con bronquiectasas con colonización por P. aeruginosa ha de basarse en antimicrobianos o asociaciones de éstos que no pierdan actividad al actuar sobre las biopelículas.

Palabras clave:
Bronquiectasias
Pseduomonas aeruginosa
Biopelículas
Persistencia
Hipermutación
Abstract

Pathogenic bronchopulmonary colonizations and the exacerbations produced are among the most important causes of reduced pulmonary function in patients with bronchiectasis. The most frequent pathogens in these patients are Haemophilus influenzae and Pseudomonas aeruginosa. Lesions are produced by the local inflammatory process and the vicious circle developed by antigen stimulation, the release of inflammatory mediators, the presence of neutrophils, the increase of bacterial inoculum and the release of bacterial exoproducts. P. aeruginosa has been demonstrated to affect the patients with bronchiectasis and poorest quality of life and to colonize those with the poorest pulmonary function and the highest number of antimicrobial treatments. In bronchiectasis, as in chronic obstructive pulmonary disease (COPD) or cystic fibrosis, P. aeruginosa is able to colonize the respiratory mucosa chronically. Due to the ecological niche occupied by P. aeruginosa and the multitude of cycles with antimicrobial agents to which these patients are subjected, the development of antimicrobial resistance is highly likely, encouraged by the high proportion of hypermutation variants in existence. Likewise, P. aeruginosa naturally grows in the form of biofilms on the mucosal surface, greatly contributing to its persistence. Antimicrobial treatment in patients with bronchiectasis and P. aeruginosa colonization should be based on antimicrobial agents, alone or in combination, that do not lose activity when acting on biofilms.

Keywords:
Bronchiectasis
Pseudomonas aeruginosa
Biofilms
Persistence
Hypermutation
Full text is only aviable in PDF
Bibliografía
[1.]
M. Vendrell, J. De Gracia, C. Olveira, M.A. Martínez, R. Girón, L. Máiz, et al.
Diagnóstico y tratamiento de las bronchiectasias. Sociedad Española de Neumología y Cirugía Torácica.
Arch Bronconeumol, 44 (2008), pp. 629-640
[2.]
M.C. Pasteur, D. Bilton, A.T. Hill.
British Thoracic Society Bronchiectasis non-CF Guideline Group British Thoracic Society guideline for non-CF bronchiectasis.
Thorax, 65 (2010), pp. i1-i58
[3.]
A.F. Barker.
Bronchiectasis.
N Engl J Med, 346 (2002), pp. 1383-1393
[4.]
S. Sethi, T.F. Murphy.
Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review.
Clin Microbiol Ver, 14 (2001), pp. 336-363
[5.]
R. Cantón, N. Cobos, J. De Gracia, F. Baquero, J. Honorato, S. Gartner, et al.
Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients.
Clin Microbiol Infect, 11 (2005), pp. 690-703
[6.]
J. Angrill, C. Agustí, R. De Celis, A. Rano, J. González, T. Solé, et al.
Bacterial colonisation in patients with bronchiectasis: microbiological pattern and risk factors.
Thorax, 57 (2002), pp. 15-19
[7.]
Z. Zoumot, R. Wilson.
Respiratory infection in noncystic fibrosis bronchiectasis.
Curr Opin Infect Dis, 23 (2010), pp. 165-170
[8.]
P.T. King, S.R. Holdsworth, N.J. Freezer, E. Villanueva, P.W. Holmes.
Microbiologic follow-up study in adult bronchiectasis.
Respir Med, 101 (2007), pp. 1633-1638
[9.]
T. Bienvenu, I. Sermet-Gaudelus, P.R. Burgel, D. Hubert, B. Crestani, L. Bassinet, et al.
Cystic fibrosis transmembrane conductance regulator channel dysfunction in noncystic fibrosis bronchiectasis.
Am J Respir Crit Care Med, 181 (2010), pp. 1078-1084
[10.]
S. Fuschillo, A. De Felice, G. Alzano.
Mucosal inflammation in idiopathic brochiectasis: cellular and molecular mechanisms.
Eur Respir J, 31 (2008), pp. 396-406
[11.]
J. Angrill, C. Agustí, R. De Celis, X. Filella, A. Rano, M. Elena, et al.
Bronchial inflammation and colonization in patients with clinically stable bronchiectasis.
Am J Respir Crit Care Med, 164 (2001), pp. 1628-1632
[12.]
S. Sethi, N. Evans, B.J. Grant, T.F. Murphy.
New strains of bacteria and exacerbations of chronic obstructive pulmonary disease.
N Engl J Med, 347 (2002), pp. 465-471
[13.]
P. King, S. Holdsworth, N. Freezer, P. Holmes.
Bronchiectasis.
Intern Med J, 36 (2006), pp. 729-737
[14.]
K.A. Miszkiel, A.U. Wells, M.B. Rubens, P.J. Cole, D.M. Hansell.
Effects of airway infection by Pseudomonas aeruginosa: a computed tomographic study.
Thorax, 52 (1997), pp. 260-264
[15.]
G. Davies, A.U. Wells, S. Doffman, S. Watanabe, R. Wilson.
The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis.
Eur Respir J, 28 (2006), pp. 974-979
[16.]
C.B. Wilson, P.W. Jones, C.J. O’Leary, D.M. Hansell, P.J. Cole, R. Wilson.
Effect of sputum bacteriology on the quality of life of patients with bronchiectasis.
Eur Respir J, 10 (1997), pp. 1754-1760
[17.]
M.A. Martínez-García, J.J. Soler-Cataluña, M. Perpiñá-Tordera, P. Román-Sánchez, J. Soriano.
Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis.
Chest, 132 (2007), pp. 1565-1572
[18.]
T.F. Murphy, S. Sethi, K.L. Klingman, A.B. Brueggemann, G.V. Doern.
Simultaneous respiratory tract colonization by multiple strains of non typeable Haemophilus influenzae in chronic obstructive pulmonary disease: implications for antibiotic therapy.
J Infect Dis, 180 (1999), pp. 404-409
[19.]
Martínez-Solano L. Martínez-Somalo, M.D. Macia, A. Fajardo, A. Oliver, J.L. Martínez.
Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease.
Clin Infect Dis, 47 (2008), pp. 1526-1533
[20.]
D. Bilton, N. Henig, B. Morrissey, M. Gotfried.
Addition of inhaled tobramycin to ciprofloxacin for acute exacerbations of Pseudomonas aeruginosa infection in adult bronchiectasis.
Chest, 130 (2006), pp. 1503-1510
[21.]
J.W. Costerton, L. Montanaro, C.R. Arciola.
Bacterial communications in implant infections: a target for an intelligence war.
Int J Artif Organs, 30 (2007), pp. 757-763
[22.]
M.D. Maciá, D. Blanquer, B. Togores, J. Sauleda, J.L. Pérez, A. Oliver.
Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections.
Antimicrob Agents Chemother, 49 (2005), pp. 3382-3386
[23.]
J. Blázquez.
Hypermutation as a factor contributing to the acquisition of antimicrobial resistance.
Clin Infect Dis, 37 (2003), pp. 1201-1209
[24.]
M.M. Tanaka, C.T. Bergstrom, B.R. Levin.
The evolution of mutator genes in bacterial populations: the roles of environmental change and timing.
Genetics, 164 (2003), pp. 843-854
[25.]
D. Hocquet, X. Bertrand, T. Köhler, D. Talon, P. Plésiat.
Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone.
Antimicrob Agents Chemother, 47 (2003), pp. 1887-1894
[26.]
A. Oliver, R. Cantón, P. Campo, F. Baquero, J. Blázquez.
High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection.
Science, 288 (2000), pp. 1251-1254
[27.]
M. Hogardt, C. Hoboth, S. Schmoldt, C. Henke, L. Bader, J. Heesemann.
Stage-specific adaptation of hypermutable Pseudomonas aeruginosa isolates during chronic pulmonary infection in patients with cystic fibrosis.
J Infect Dis, 195 (2007), pp. 70-80
[28.]
M. García-Castillo, R. Del Campo, F. Baquero, M.I. Morosini, M.C. Turrientes, J. Zamora, et al.
Stationary biofilm growth normalizes mutation frequencies and mutant prevention concentrations in Pseudomonas aeruginosa from cystic fibrosis patients.
Clin Microbiol Infect, (2010),
[29.]
S.S. Branda, S. Vik, L. Friedman, R. Kolter.
Biofilms: the matrix revisited.
Trends Microbiol, 13 (2005), pp. 20-26
[30.]
M.E. Davey, N.C. Caiazza, G.A. O’Toole.
Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1.
J Bacteriol, 185 (2003), pp. 1027-1036
[31.]
P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton.
Biofilms as complex differentiated communities.
Annu Rev Microbiol, 56 (2002), pp. 187-209
[32.]
R.M. Donlan, J.W. Costerton.
Biofilms: survival mechanisms of clinically relevant microorganisms.
Clin Microbiol Rev, 15 (2002), pp. 167-193
[33.]
C.A. Fux, P. Stoodley, L. Hall-Stoodley, J.W. Costerton.
Bacterial biofilms: a diagnostic and therapeutic challenge.
Expert Rev Anti Infect Ther, 1 (2003), pp. 667-683
[34.]
S.M. Moskowitz, J.M. Foster, J.C. Emerson, R.L. Gibson, J.L. Burns.
Use of Pseudomonas biofilm susceptibilities to assign simulated antibiotic regimens for cystic fibrosis airway infection.
J Antimicrob Chemother, 56 (2005), pp. 879-886
[35.]
T.S. Murray, M. Egan, B.I. Kazmierczak.
Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients.
Curr Opin Pediatr, 19 (2007), pp. 83-88
[36.]
N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Ciofu.
Antibiotic resistance of bacterial biofilms.
Int J Antimicrob Agents, 35 (2010), pp. 322-332
Copyright © 2011. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología

Subscribe to our newsletter

Article options
Tools

Are you a health professional able to prescribe or dispense drugs?