Journal Information
Vol. 43. Issue 10.
Pages 562-572 (January 2007)
Share
Share
Download PDF
More article options
Vol. 43. Issue 10.
Pages 562-572 (January 2007)
Review Article
Full text access
Usefulness of Positron Emission Tomography-Computed Tomography in Respiratory Medicine
Visits
4946
Antonio Maldonadoa,
Corresponding author
antonio.maldonado@gruporecoletas.com

Correspondence: Dr. A. Maldonado. Centro PET Recoletas La Milagrosa. Modesto Lafuente, 14. 28010 Madrid. España
, Francisco Javier González-Alendaa, Mercedes Alonsob, José María Sierrab
a Centro PET Recoletas La Milagrosa, Madrid, Spain
b Centro PET Recoletas, Valladolid, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics

The introduction of positron emission tomography (PET) into the management of neoplastic disease in respiratory patients signified an important change from classic algorithms based exclusively on anatomic information obtained through computed tomography (CT).

Non-small cell lung cancer and solitary pulmonary nodule were the 2 diseases in which metabolic PET imaging offered the highest diagnostic yield, as has been evident since the inclusion of this technology among the services available within the Spanish national health service. However, a number of limitations were encountered in relation to the lack of anatomic definition in PET imaging, as had been described in the literature.

The appearance in 2001 of hybrid PET-CT devices has not only helped remedy those defects, but has also made it possible to combine anatomic and metabolic information in a single image, making this hybrid technology the most valuable tool in the current diagnostic arsenal.

Key words:
Fluorodeoxyglucose-positron emission tomography (FDG-PET)
Positron emission tomography-computed tomography (PET-CT)
Lung cancer
Solitary pulmonary nodule

La introducción de la tomografía por emisión de positrones (PET) en el manejo del paciente con enfermedad neoplásica en neumología supuso un importante cambio respecto a los algoritmos clásicamente basados sólo en la anatomía que ofrecía la tomografía computarizada (TC).

El carcinoma pulmonar no microcítico y el nódulo pulmonar solitario fueron las 2 enfermedades donde mayor rendimiento diagnóstico ofreció la imagen metabólica PET, como ha quedado demostrado tras su reciente incorporación a la cartera de servicios comunes del Sistema Nacional de Salud. Sin embargo, la falta de delimitación anatómica de la imagen PET conllevaba una serie de limitaciones que habían sido descritas en la literatura médica.

La aparición de los equipos híbridos PET-TC en 2001 ayudó no sólo a corregir estos defectos, sino que además, al unir la información anatómica y metabólica en una sola imagen, ha hecho que esta tecnología sea la más valiosa dentro del arsenal diagnóstico actual.

Palabras clave:
Tomografía por emisión de positrones-fluoro-2- desoxi-D-glucosa (PET-FDG)
Tomografía por emisión de positrones-Tomografía computarizada (PET-TC)
Cáncer de pulmón
Nódulo pulmonar
Full text is only aviable in PDF
REFERENCES
[1]
PJ Ell.
The contribution of PET/CT to improved patient management.
Br J Radiol, 79 (2006), pp. 32-36
[2]
ME Juweid, BD Cheson.
PET and assessment of cancer therapy.
N Engl J Med, 354 (2006), pp. 496-507
[3]
M Rodríguez, C Asensio, A Maldonado, JP Suárez, MA Pozo.
PETTAC: indicaciones, revisión sistemática y metaanálisis, Ministerio de Sanidad y Consumo. Instituto de Salud Carlos III. Agencia de Evaluación de Tecnologías Sanitarias (AETS), (2004),
[4]
E Andradas, M Reza, N Gómez, JL Carreras.
Efectividad, seguridad e indicaciones del sistema híbrido PET/TAC. Informe Técnico IT01/2004. Unidad de Evaluación de Tecnologías Sanitarias, Agencia Laín Entralgo, (2004),
[5]
S Von, HC Steinert, TF Hany.
Integrated PET/CT: current applications and future directions.
Radiology, 238 (2006), pp. 405-422
[6]
MK Gould, CC Maclean, WG Kuschner, CE Rydzak, DK Owens.
Accuracy of positron emission tomography (PET) for the diagnosis of pulmonary nodules and mass lesions: a meta-analysis.
JAMA, 285 (2001), pp. 914-924
[7]
CA Yi, KS Lee, BT Kim, JY Choi, OJ Kwon, H Kim, et al.
Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT.
J Nucl Med, 47 (2006), pp. 443-450
[8]
M Rodríguez, C Asensio.
Uso tutelado de la PET con FDG, Ministerio de Sanidad y Consumo. Instituto de Salud Carlos III. Agencia de Evaluación de Tecnologías Sanitarias (AETS), (2005),
[9]
SS Shim, KS Lee, BT Kim, JY Choi, MJ Chung, EJ Lee.
Focal parenchymal lung lesions showing a potential of false-positive and false-negative interpretations on integrated PET/CT.
AJR Am J Roentgenol, 186 (2006), pp. 639-648
[10]
AS Bryant, RJ Cerfolio.
The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules.
Ann Thorac Surg, 82 (2006), pp. 1016-1020
[11]
I Goethals, P Smeets, F De Winter.
Focally enhanced F-18 fluorodeoxyglucose (FDG) uptake in incidentally detected pulmonary embolism on PET/CT scanning.
Clin Nucl Med, 31 (2006), pp. 497-498
[12]
KU Juergens, M Weckesser, L Stegger.
Tumor staging using whole- body high-resolution 16-channel PET-CT: does additional low-dose chest CT in inspiration improve the detection of solitary pulmonary nodules?.
Eur Radiol, 16 (2006), pp. 1131-1137
[13]
SM Larson, SA Nehmeh, YE Erdi.
PET/CT in non-small-cell lung cancer: value of respiratory-gated PET.
Chang Gung Med J, 28 (2005), pp. 306-314
[14]
F Pozo-Rodríguez, JL Martín de Nicolás, MA Sánchez-Nistal, A Maldonado, S García de Barajas, R Calero-Garcia, et al.
Accuracy of helical computed tomography and [18F] fluorodeoxyglucose positron emission tomography for identifying lymph node mediastinal metastases in potentially resectable non-small-cell lung cancer.
J Clin Oncol, 23 (2005), pp. 8348-8356
[15]
A Fritscher-Ravens, KH Bohuslavizki, L Brandt, C Bobrowski, C Lund, WT Knofel, et al.
Mediastinal lymph node involvement in potentially resectable lung cancer. Comparison of CT, PET and endoscopic ultrasonography with and without FNA.
Chest, 123 (2003), pp. 442-451
[16]
JF Vansteenkiste.
Imaging in lung cancer: PET scan.
Eur Respir J, 35 (2002), pp. 49S-60S
[17]
RM Pieterman, JW van Putten, JJ Meuzelaar, EL Mooyaart, W Vaalburg, GH Koeter, et al.
Preoperative staging of non small-cell lung cancer with positron emission tomography.
N Engl J Med, 343 (2000), pp. 254-261
[18]
BA Dwamena, SS Sonnad, JO Angobaldo, RL Wahl.
Metastases from non-small cell lung cancer: mediastinal staging in the 1990s— meta-analytic comparison of PET and CT.
[19]
CJ Beadsmoore, NJ Screaton.
Classification, staging and prognosis of lung cancer.
Eur J Radiol, 45 (2003), pp. 8-17
[20]
E Weng, L Tran, S Rege, A Safa, A Sadeghi, G Juillard, et al.
Accuracy and clinical impact of mediastinal lymph node staging with FDGPET imaging in potentially respectable lung cancer.
Am J Clin Oncol, 23 (2000), pp. 47-52
[21]
W de Wever, S Ceyssens, L Mortelmans, S Stroobants, G Marchal, J Bogaert, et al.
Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT.
Eur Radiol, 17 (2007), pp. 467-473
[22]
T Bury, A Barreto, F Daenen, N Barthelemy, B Ghaye, P Rigo.
FDGPET for the detection of bone metastases in patients with NSCLC.
Eur J Nucl Med, 25 (1998), pp. 1244-1247
[23]
JF Vansteenkiste, SG Stroobants, PR de Leyn, PJ Dupont, EK Verbeken.
Potential use of FDG-PET scan after induction chemotherapy in surgically staged IIIA-N2 NSCLC: a prospective pilot study.
Ann Oncol, 9 (1998), pp. 1193-1198
[24]
JF Vansteenkiste, JE Vandebroek, KL Nackaerts, P Weynants, YJ Valcke, DA Verresen, et al.
Clinical-benefit response in advanced non- small-cell lung cancer: A multicentre prospective randomised phase III study of single agent gemcitabine versus cisplatin-vindesine.
Ann Oncol, 12 (2001), pp. 1221-1230
[25]
JS Ryu, NC Choi, AJ Fischman, TJ Lynch, DJ Mathisen.
FDG-PET in staging and restaging NSCLC after neoadjuvant chemoradiotherapy: correlation with histopathology.
Lung Cancer, 35 (2002), pp. 179-187
[26]
T Akhurst, RJ Downey, MS Ginsberg, M Gonen, M Bains, R Korst, et al.
An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung cancer.
Ann Thorac Surg, 73 (2002), pp. 259-264
[27]
C Pottgen, S Levegrun, D Theegarten, S Marnitz, S Grehl, R Pink, et al.
Value of 18F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy.
Clin Cancer Res, 12 (2006), pp. 97-106
[28]
WA Weber, V Petersen, B Schmidt, L Tyndale-Hines, T Link, C Peschel, et al.
Positron emission tomography in non-small-cell lung cancer: Prediction of response to chemotherapy by quantitative assessment of glucose use.
J Clin Oncol, 21 (2003), pp. 2651-2657
[29]
BM Fischer, J Mortensen, SW Langer, A Loft, AK Berthelsen, G Daugaard, et al.
PET/CT imaging in response evaluation of patients with small cell lung cancer.
Lung Cancer, 54 (2006), pp. 41-49
[30]
RJ Hicks, V Kalff, MP MacManus, RE Ware, AF McKenzie, JP Matthews, et al.
The utility of 18F-FDG PET for suspected recurrent non- small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification.
J Nucl Med, 42 (2001), pp. 1605-1613
[31]
EF Patz Jr, VJ Lowe, JM Hoffman, SS Paine, LK Harris, PC Goodman.
Persistent or recurrent bronchogenic carcinoma: detection with FDG-PET.
Radiology, 191 (1994), pp. 379-382
[32]
T Bury, JL Corhay, B Duysinx, F Daenen, B Ghaye, N Barthelemy, et al.
Value of FDG-PET in detecting residual or recurrent NSCLC.
Eur Respir J, 14 (1999), pp. 1376-1380
[33]
EF Patz, J Connolly, J Herndon.
Prognostic value of thoracic FDG PET imaging after treatment for NSCLC.
AJR Am J Roentgenol, 174 (2000), pp. 769-774
[34]
Z Keidar, N Haim, L Guralnik, M Wollner, R Bar-Shalom, A Ben-Nun, et al.
PET/CT using FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management.
J Nucl Med, 45 (2004), pp. 1640-1646
[35]
V Ahuja, RE Coleman, J Herndon, EF Patz Jr.
The prognostic significance of FDG-PET imaging for patients with NSCLC.
Cancer, 83 (1998), pp. 918-924
[36]
JF Vansteenkiste, SG Stroobants, PJ Dupont, PR de Leyn, EK Verbeken, GJ Deneffe, et al.
Prognostic importance of the SUV on FDG-PET in NSCLC: an analysis of 125 cases.
J Clin Oncol, 17 (1999), pp. 3201-3206
[37]
K Dhital, CA Saunders, PT Seed, MJ O'Doherty, J Dussek.
FDGPET and its prognostic value in lung cancer.
Eur J Cardiothorac Surg, 18 (2000), pp. 425-428
[38]
R Sasaki, R Komaki, H Macapinlac, J Erasmus, P Allen, K Foster, et al.
FDG uptake by PET predicts outcome of NSCLC.
J Clin Oncol, 23 (2005), pp. 1136-1143
[39]
AS Bryant, RJ Cerfolio, KM Klemm, B Ojha.
Maximum standard uptake value of mediastinal lymph nodes on integrated FDG-PETCT predicts pathology in patients with non-small cell lung cancer.
Ann Thorac Surg, 82 (2006), pp. 417-422
[40]
T Nishioka, T Shiga, H Shirato, E Tsukamoto, MDK Tsuchiya, T Kato, et al.
Image fusion between [18F]FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas.
Int J Radiat Oncol Biol Phys, 53 (2002), pp. 1051-1057
[41]
M Zimny, JE Wildberger, U Cremerius, E DiMartino, S Jaenicke, B Nowak, et al.
Combined image interpretation of computed tomography and hybrid PET in head and neck cancer.
Nuklearmedizin, 41 (2002), pp. 14-21
[42]
S Mutic, RS Malyapa, PW Grigsby, F Dehdashti, TR Miller, I Zoberi, et al.
PET-guided IMRT for cervical carcinoma with positive paraaortic lymph nodes—a dose-escalation treatment planning study.
Int J Radiat Oncol Biol Phys, 55 (2003), pp. 28-35
[43]
C Scarfone, WC Lavely, AJ Cmelak, D Delbeke, WH Martin, D Billheimer, et al.
Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging.
J Nucl Med, 45 (2004), pp. 543-552
[44]
IF Ciernik, E Dizendorf, BG Baumert, B Reiner, C Burger, JB Davis, et al.
Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study.
Int J Radiat Oncol Biol Phys, 57 (2003), pp. 853-863
[45]
H Ashamalla, S Rafla, K Parikh, B Mokhtar, G Goswami, S Kambam, et al.
The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer.
Int J Radiat Oncol Biol Phys, 63 (2005), pp. 1016-1023
[46]
M Meignan, G Paone.
18-fluoro-deoxy-glucose (FDG) positron emission tomography (PET) for the evaluation of malignant pleural disease.
Rev Pneumol Clin, 62 (2006), pp. 128-134
[47]
MT Truong, EM Marom, JJ Erasmus.
Preoperative evaluation of patients with malignant pleural mesothelioma: role of integrated CTPET imaging.
J Thorac Imaging, 21 (2006), pp. 146-153
[48]
JJ Erasmus, MT Truong, WR Smythe, RF Munden, EM Marom, DC Rice, et al.
Integrated computed tomography-positron emission tomography in patients with potentially resectable malignant pleural mesothelioma: staging implications.
J Thorac Cardiovasc Surg, 129 (2005), pp. 1364-1370
[49]
V Ambrosini, D Rubello, C Nanni, M Farsad, P Castellucci, R Franchi, et al.
Additional value of hybrid PET/CT fusion imaging vs. conventional CT scan alone in the staging and management of patients with malignant pleural mesothelioma.
Nucl Med Rev Cent East Eur, 8 (2005), pp. 111-115
[50]
D Fiore, V Baggio, G Sotti, PC Muzzio.
Imaging before and after multimodal treatment for malignant pleural mesothelioma.
Radiol Med (Torino), 111 (2006), pp. 355-364
Copyright © 2007. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?