Journal Information
Vol. 46. Issue 2.
Pages 56-63 (February 2010)
Share
Share
Download PDF
More article options
Vol. 46. Issue 2.
Pages 56-63 (February 2010)
Original Article
Full text access
Severity Related Differences in Lung Attenuation in Men With COPD
Diferencias en función de la gravedad de la atenuación pulmonar en varones con EPOC
Visits
5029
Isabel Torresa, María Allonab,
Corresponding author
mariaallona@yahoo.es

Corresponding author.
, Marta Martíneza, Vanesa Loresc, Blas Rojoc, Francisco García-Ríoc
a Servicio de Radiología, Hospital Universitario La Paz, Madrid, Spain
b Servicio de Radiología, Hospital Universitario Madrid Norte Sanchinarro, Madrid, Spain
c Servicio de Neumología, Hospital Universitario La Paz, Madrid, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract
Background and objectives

We compare the inspiratory and expiratory regional lung densities between different levels of COPD severity (as assessed by the GOLD scale and by the BODE index), and to assess the relationship between regional lung densities and functional lung parameters.

Patients and methods

Fifty-five stable moderate-severe COPD men were selected. Functional evaluation included dyspnoea scale, blood gases, spirometry, plethysmography, diffusing capacity and six-minute walk test. Severity was classified according the GOLD scale and the BODE index. High resolution computed tomography (HRCT) scans of the entire lung at full inspiration and two sections at full expiration were obtained. Densitometry software was used to calculate the densities of the lung areas.

Results

Inspiratory and expiratory mean lung densities (MLD) of the lower lobes were significantly lower in very severe and severe COPD patients than in moderate patients. In contrast, we only found differences between the upper lobe MLD values of moderate and severe COPD patients. Inspiratory and expiratory HRCT densities were similar among all BODE quartiles, for both the upper and lower lobes. In a multiple regression analysis, airway obstruction parameters were mainly related to the expiratory MLD of the lower lobes, whereas lung hyperinflation parameters were predicted by the inspiratory MLD of the lower lobes. Lastly, diffusion capacity was independently related to the expiratory/inspiratory MLD of the lower lobes and to the inspiratory MLD of the upper lobes.

Conclusions

There are differences in lung attenuation measurements by HRCT between the varying levels of COPD severity as assessed by the GOLD scale.

Keywords:
COPD
Computed tomography
Pulmonary function test
Resumen
Introducción

El objetivo del estudio ha sido comparar la atenuación pulmonar inspiratoria y espiratoria en varones con enfermedad pulmonar obstructiva crónica (EPOC), según la gravedad, así como valorar la relación entre la atenuación del parénquima y la función pulmonar.

Pacientes y métodos

Se seleccionó a 55 varones con EPOC moderada-muy grave y clínicamente estables. Se les realizaron gasometría arterial, espirometría, pletismografía, difusión de monóxido de carbono y prueba de la marcha. La gravedad de la EPOC se clasificó en función de la escala GOLD y del índice BODE. Se realizó una tomografía computarizada de tórax de alta resolución en inspiración y espiración, utilizando un programa informático específico para medir la atenuación de las diferentes áreas pulmonares.

Resultados

La atenuación de los lóbulos inferiores fue menor en pacientes con EPOC grave y muy grave que en casos con enfermedad moderada, tanto en inspiración como en espiración. En los varones con EPOC moderada y grave se detectaron diferencias en la atenuación media de los lóbulos superiores. No se hallaron diferencias en función de los cuartiles del índice BODE. Los parámetros de obstrucción de la vía aérea se relacionaron principalmente con la atenuación de los lóbulos inferiores en espiración, mientras que los parámetros de hiperinsuflación se correlacionaron con la atenuación en inspiración. Por último, la capacidad de difusión se relacionó de forma independiente con el valor de atenuación espiratoria/inspiratoria de los lóbulos inferiores y la atenuación de los lóbulos inferiores en inspiración.

Conclusiones

Se observan diferencias en la atenuación pulmonar entre los diferentes grados de gravedad de la EPOC establecidos según la clasificación GOLD.

Palabras clave:
EPOC
Lactatodeshidrogenasa
Isoenzimas
Músculo esquelético
Full text is only aviable in PDF
References
[1.]
W.M. Vollmer, M.L. Osborne, A.S. Buist.
20-year trends in the prevalence of asthma and chronic airflow obstruction in an HMO.
Am J Respir Crit Care Med, 157 (1998), pp. 1079-1084
[2.]
D.M. Mannino, R.C. Gagnon, T.L. Petty, E. Lydick.
Obstructive lung disease and low lung function in adults in the United States-Data from the National Health and Nutrition Examination Survey, 1988-1994.
Arch Intern Med, 160 (2000), pp. 1683-1689
[3.]
G. Peces-Barba, J.A. Barberá, A. Agustí, C. Casanova, A. Casas, J.L. Izquierdo, et al.
Guía clínica SEPAR-ALAT de diagnóstico y tratamiento de la EPOC.
Arch Bronconeumol, 44 (2008), pp. 271-281
[4.]
V.S. Pena, M. Miravitlles, R. Gabriel, C.A. Jiménez-Ruiz, C. Villasante, J.F. Masa, et al.
Geographic variations in prevalence and underdiagnosis of COPD: results of the IBERPOC multicentre epidemiological study.
Chest, 118 (2000), pp. 981-989
[5.]
J. García-Aymerich, A. Agustí, J. Barberá, J. Belda, E. Farrero, J. Ferrer, et al.
La heterogeneidad fenotípica de la EPOC.
Arch Bronconeumol, 45 (2009), pp. 129-138
[6.]
J. García-Aymerich, F.P. Gómez, J.M. Antó.
Caracterización fenotípica y evolución de la EPOC en el studio PAC-COPD: diseño y metodología.
Arch Bronconeumol, 45 (2009), pp. 4-11
[7.]
K.F. Rabe, S. Hurd, A. Anzueto, P.J. Barnes, S.A. Buist, P. Calverley, et al.
Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: GOLD executive summary.
Am J Respir Crit Care Med, 176 (2007), pp. 532-555
[8.]
B.R. Celli, C.G. Cote, J.M. Marín, C. Casanova, M. Montes de Oca, R.A. Méndez, et al.
The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease.
N Engl J Med, 350 (2004), pp. 1005-1012
[9.]
P.A. Gevenois, P. De Vuyst, M. Sy, P. Scillia, L. Chaminade, V. De Maertelaer, et al.
Pulmonary emphysema: quantitative CT during expiration.
Radiology, 199 (1996), pp. 825-829
[10.]
P.A. Gevenois, V. De Maertelaer, P. De Vuyst, J. Zanen, J.C. Yernault.
Comparison of computed density and macroscopic morphometry in pulmonary emphysema.
Am J Respir Crit Care Med, 152 (1995), pp. 653-657
[11.]
R.J. Knudson, J.R. Standen, W.T. Kaltenborn, D.E. Knudson, K. Rehm, M.P. Habib, et al.
Expiratory computed tomography for assessment of suspected pulmonary emphysema.
Chest, 99 (1991), pp. 1357-1366
[12.]
K. Soejima, K. Yamaguchi, E. Kohda, K. Takeshita, Y. Ito, H. Mastubara, et al.
Longitudinal follow-up study of smoking-induced lung density changes by high-resolution computed tomography.
Am J Respir Crit Care Med, 161 (2000), pp. 1264-1273
[13.]
S. Eda, K. Kubo, K. Fujimoto, Y. Matsuzawa, M. Sekiguchi, F. Sakai.
The relations between expiratory chest CT using helical CT and pulmonary function tests in emphysema.
Am J Respir Crit Care Med, 155 (1997), pp. 1290-1294
[14.]
F. Mitsunobu, T. Mifune, K. Ashida, Y. Hosaki, H. Tsugeno, M. Okamoto, et al.
Influence of age and disease severity on high resolution CT lung densitometry in asthma.
Thorax, 56 (2001), pp. 851-856
[15.]
F. Mitsunobu, K. Ashida, Y. Hosaki, H. Tsugeno, M. Okamoto, N. Nishida, et al.
Decreased computed tomographic lung density during exacerbation of asthma.
Eur Respir J, 22 (2003), pp. 106-112
[16.]
R.A. O’Donnell, C. Peebles, J.A. Ward, A. Daraker, G. Anqco, P. Broberg, et al.
Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD.
[17.]
D. Mahler, C. Weels.
Evaluation of clinical methods for rating dyspnea.
Chest, 93 (1988), pp. 580-586
[18.]
F. García-Río, J.M. Pino, J.J. Díez, A. Ruiz, C. Villasante, J. Villamor.
Reduction of lung distensibility in acromegaly after suppression of growth hormone hypersecretion.
Am J Respir Crit Care Med, 164 (2001), pp. 852-857
[19.]
P.H. Quanjer, G.J. Trammeling, J.E. Cotes, L.M. Fabbri, H. Matthys, O.F. Pedersen, et al.
Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests. European Community for Steel and Coal. Official Statement of the European Respiratory Society.
Eur Respir J, 6 (1993), pp. 5S-40S
[20.]
D.E. O’Donnell, K.A. Web.
Exertional breathlessness in patients with chronic airflow limitation: the role of lung hyperinflation.
Am Rev Respir Dis, 148 (1993), pp. 1351-1357
[21.]
W.S. Blakemore, R.E. Forster, J.W. Morton, C.M. Ogilvie.
A standardized breath-holding technique for the clinical measurement of the diffusing capacity for carbon monoxide.
J Clin Invest, 36 (1957), pp. 1-17
[22.]
R.M. Marrades, O. Díaz, J. Roca, J.M. Campistol, J.V. Torregrosa, J.A. Barberà, et al.
Adjustment of DLCO for hemoglobin concentration.
Am J Respir Crit Care Med, 155 (1997), pp. 236-241
[23.]
J.E. Cotes, D.J. Chinn, P.H. Quanjer, J. Roca, J.C. Yernault.
Standardization of the measurement of transfer factor (diffusing capacity).
Eur Respir J, 6 (1993), pp. 41-52
[24.]
American Thoracic Society.
Guidelines for the six-minute walk test: American Thoracic Society Statement.
Am J Respir Crit Care Med, 166 (2002), pp. 111-117
[25.]
P. Armitage, G. Berry.
Statistical methods in medical search.
Blackwell Scientific Publishers, (1987),
[26.]
H.U. Kauczor, J. Hast, C.P. Heussel, J. Schlegel, P. Mildenberger, M. Thelen.
CT attenuation of paired HRCT scans obtained at full inspiratory/expiratory position: comparison with pulmonary function tests.
Eur Radiol, 12 (2002), pp. 2757-2763
[27.]
U. Studler, T. Gluecker, G. Bongartz, J. Roth, W. Steinbrich.
Image quality from high resolution CT of the lung: comparison of axial scans and of sections reconstructed from volumetric data acquired using MDCT.
Am J Roentgenol, 185 (2005), pp. 602-607
[28.]
C. Moroni, M. Mascalchi, G. Camiciottoli, M. Bartolucci, F. Falaschi, L. Battolla, et al.
Comparison of spirometric-gated and -ungated TCAR in COPD.
J Comput Assist Tomogr, 27 (2003), pp. 375-379
[29.]
M. Akira, K. Toyokawa, Y. Inoue, T. Arai.
Quantitative CT in chronic obstructive pulmonary disease: inspiratory and expiratory assessment.
Am J Roentgenol, 192 (2009), pp. 267-272
[30.]
P.W. Sutherland, T. Katsura, J. Milic-Emili.
Previous volume history of the lung and regional distribution of gas.
J Appl Physiol, 25 (1968), pp. 566-574
[31.]
Y. Nakano, H. Sakai, S. Muro, T. Hirai, Y. Oku, K. Nishimura, et al.
Comparison of low attenuation areas on computed tomographic scans between inner and other segments of the lungs in patients with chronic obstructive pulmonary disease: incidence and contribution to lung function.
Thorax, 54 (1999), pp. 384-389
[32.]
G. Camiciottoli, M. Bartolucci, N.M. Maluccio, C. Moroni, M. Mascalchi, C. Giuntini, et al.
Spirometrically gated high-resolution CT findings in COPD: lung attenuation vs lung function and dyspnea severity.
Chest, 129 (2006), pp. 558-564
[33.]
D.E. O’Donnell, M. Lam, K.A. Webb.
Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 158 (1998), pp. 1557-1565
[34.]
C. Casanova, C. Cote, J.P. De Torres, A. Aguirre-Jaime, J.M. Marín, V. Pinto-Plata, et al.
Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 171 (2005), pp. 591-597
[35.]
K. Nishimura, T. Izumi, M. Tsukino, T. Oga.
Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD.
Chest, 121 (2002), pp. 1434-1440
[36.]
P. Boschetto, S. Quintavalle, E. Zeni, S. Leprotti, A. Potena, L. Ballerin, et al.
Association between markers of emphysema and more severe chronic obstructive pulmonary disease.
Copyright © 2010. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?