Journal Information
Vol. 45. Issue 5.
Pages 230-234 (May 2009)
Share
Share
Download PDF
More article options
Vol. 45. Issue 5.
Pages 230-234 (May 2009)
Original article
Full text access
Salbutamol Improves Diaphragmatic Contractility in Chronic Airway Obstruction
El salbutamol mejora la contractilidad diafragmática en la obstrucción crónica de la vía aérea
Visits
4168
Martín Angulo, Eliseo Taranto
Corresponding author
etaranto@hc.edu.uy

Corresponding author.
, Juan Pablo Soto, Leonel Malacrida, Nicolás Nin, F. Javier Hurtado, Héctor Píriz
Departamento de Fisiopatología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract
Introduction

Chronic airflow obstruction in conditions such as chronic obstructive pulmonary disease is associated with respiratory muscle dysfunction. Our aim was to study the effects of salbutamol—a β2-adrenergic agonist known to improve muscle strength in physiologic and pathologic conditions—on diaphragm contractility in an animal model of chronic airway obstruction achieved by tracheal banding.

Materials and Methods

Twenty-four Sprague-Dawley rats were randomized into a control group and 3 tracheal banding groups, 1 that received acute salbutamol treatment, 1 that received chronic salbutamol treatment, and 1 that received nothing. Arterial blood gases, acid-base balance, and in vitro diaphragmatic contractility were evaluated by measuring peak twitch tension, contraction time, contraction velocity, half-relaxation time, relaxation velocity, and force-frequency curves.

Results

The 3 study groups had significantly reduced arterial pH and increased PaCO2 and bicarbonate levels compared to the control group (P<.05). The untreated tracheal banding group had significantly reduced peak twitch tension and contraction velocity, and a significantly lower force-frequency curve in comparison with the other groups (P<.05). The chronic treatment group had a higher relaxation velocity than the untreated study group (P<.05). The mean (SE) peak twitch tension values were 6.46 (0.90) N/cm2 for the control group, 3.28 (0.55) N/cm2 for the untreated tracheal banding group, 6.18 (0.71) N/cm2 for the acute treatment group, and 7.09 (0.59) N/cm2 for the chronic treatment group.

Conclusions

Diaphragmatic dysfunction associated with chronic airflow obstruction improves with both the acute and chronic administration of salbutamol. The mechanisms involved in respiratory muscle dysfunction warrant further study.

Keywords:
Diaphragm
Tracheal banding
COPD
Salbutamol
Resumen
Introducción

Las enfermedades con obstrucción crónica de la vía aérea, como la enfermedad pulmonar obstructiva crónica, asocian alteraciones funcionales de los músculos respiratorios. Los agonistas adrenérgicos β2 mejoran la fuerza muscular en condiciones fisiológicas y patológicas. Nuestro objetivo ha sido estudiar los efectos del salbutamol sobre la contractilidad diafragmática en un modelo animal de obstrucción crónica de la vía aérea lograda por obstrucción traqueal (OT) extrínseca.

Materiales y métodos

Se aleatorizaron 24 ratas Sprague-Dawley en 4 grupos: a) control; b) OT; c) OT+salbutamol agudo, y d) OT+salbutamol crónico. Se estudiaron los gases sanguíneos, el equilibrio ácido-base y la fuerza diafragmática in vitro, a través de las siguientes medidas: tensión máxima (Tmáx), tiempo de contracción (TC), velocidad de contracción (dT/dtmáx), tiempo de relajación media (TR1/2), velocidad de relajación (−d‘T/dtmáx) y curvas fuerza-frecuencia.

Resultados

Los 3 grupos sometidos a OT presentaron una disminución significativa del pH y un incremento de la presión arterial de anhídrido carbónico y del bicarbonato en sangre arterial (p<0,05). El grupo OT experimentó una disminución significativa de Tmáx, de dT/dtmáx y de la curva fuerza-frecuencia en comparación con los otros grupos (p<0,05). La –dT/dtmáx fue mayor en el grupo OT+salbutamol crónico comparado con el grupo OT (p<0,05). Los valores medios (± error estándar) de Tmáx fueron: control, 6,46±0,90 N/cm2; OT, 3,28±0,55 N/cm2; OT+salbutamol agudo, 6,18±0,71 N/cm2; OT+salbutamol crónico, 7,09±0,59 N/cm2.

Conclusiones

La disfunción diafragmática asociada a obstrucción crónica de la vía aérea mejora con salbutamol administrado tanto en forma aguda como crónica. Los mecanismos involucrados en la disfunción muscular deben analizarse más profundamente.

Palabras clave:
Diafragma
Obstrucción traqueal extrínseca
EPOC
Salbutamol
Full text is only aviable in PDF
References
[1.]
T. Keens, V. Chen, V. Patel, P. O’Brien, H. Levison, C. Ianuzzo.
Cellular adaptations of the ventilatory muscles to a chronic increased respiratory load.
J Appl Physiol, 44 (1978), pp. 905-908
[2.]
D. Prezant, T. Aldrich, B. Richner, E. Gentry, D. Valentine, H. Nagashima, et al.
Effects of long-term continuous respiratory resistive loading on rat diaphragm function and structure.
J Appl Physiol, 74 (1993), pp. 1212-1219
[3.]
W. Reid, J. Huang, S. Bryson, D. Walker, A. Belcastro.
Diaphragm injury and myofibrillar structure induced by resistive loading.
J Appl Physiol, 76 (1994), pp. 176-184
[4.]
G. Supinski, D. Nethery, D. Stofan, W. Hirschfield, A. DiMarco.
Diaphragmatic lipid peroxidation in chronically loaded rats.
J Appl Physiol, 86 (1999), pp. 651-658
[5.]
W. Reid, A. Belcastro.
Time course of diaphragm injury calpain activity during resistive loading.
Am J Respir Crit Care, 162 (2000), pp. 1801-1806
[6.]
S. Levine, L. Kaiser, J. Leferovich, B. Tikunov.
Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease.
N Engl J Med, 337 (1997), pp. 1799-1806
[7.]
N. Macgowan, K. Evans, J. Road, D. Reid.
Diaphragm injury in individuals with airflow obstruction.
Am J Respir Crit Care Med, 163 (2001), pp. 1654-1659
[8.]
J. Wijnhover, A.J. Janssen, T. van Kuppevelt, R. Rodenburg, P. Dekhuijzen.
Metabolic capacity of the diaphragm in patients with COPD.
Respir Med, 100 (2006), pp. 1064-1071
[9.]
E. Barreiro, B. de la Puente, J. Minguella, J. Corominas, S. Serrano, S. Hussain, et al.
Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 171 (2005), pp. 1116-1124
[10.]
C. Ottenheijm, L. Heunks, Y. Li, B. Jin, R. Minnaard, H. van Hees, P. Dekhuijzen.
Activation of the ubiquitin-proteasome pathway in the diaphragm in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 174 (2006), pp. 997-1002
[11.]
C. Ottenheijm, L. Heunks, G. Sieck, W. Zhan, S. Jansen, H. Degens, et al.
Diaphragm dysfunction in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 172 (2005), pp. 200-205
[12.]
J. Gea, E. Barreiro.
Actualización en los mecanismos de disfunción muscular en la EPOC.
Arch Bronconeumol, 44 (2008), pp. 328-337
[13.]
H. van der Heijden, R. Van Balkom, H. Folgering, C. van Herwaarden, P. Dekhuijzen.
Effects of salbutamol on rat diaphragm contractility.
J Appl Physiol, 81 (1996), pp. 1103-1110
[14.]
H. van der Heijden, P. Dekhuijzen, H. Folgering, C. van Herwaarden.
Inotropic effects of salbutamol on rat diaphragm contractility are potentiated by foreshortening.
Am J Respir Crit Care Med, 155 (1997), pp. 1072-1079
[15.]
H. van der Heijden, W. Zhan, Y. Prakash, P. Dekhuijzen, G. Sieck.
Salbutamol enhances isotonic contractile properties of rat diaphragm muscle.
J Appl Physiol, 85 (1998), pp. 525-529
[16.]
H. Píriz, N. Nin, J. Boggia, M. Angulo, F.J. Hurtado.
El salbutamol mejora la fuerza diafragmática en la sepsis experimental.
Arch Bronconeumol, 44 (2008), pp. 135-139
[17.]
U. Hatipoglu, F. Laghi, M. Tobin.
Does inhaled albuterol improve diaphragmatic contractility in patients with chronic obstructive pulmonary disease?.
Am J Respir Crit Care Med, 160 (1999), pp. 1916-1921
[18.]
W. Carter, M. Lynch.
Comparison of the effects of salbutamol and clenbuterol on skeletal muscle mass and carcass composition in senescent rats.
Metabolism, 43 (1994), pp. 1119-1125
[19.]
W. Reid, J. Noonan, F. Chung, C. Tesler-Mabe.
Ventilatory failure induced by tracheal banding in the hamster.
J Appl Physiol, 73 (1992), pp. 1671-1675
[20.]
M.J. Barranco, J. Cortijo, M.A. Ciscar, M. Ramón, G. Juan.
Efecto del CO2 sobre el diafragma de rata in vitro.
Arch Bronconeumol, 30 (1994), pp. 445-448
[21.]
Statement of the American Thoracic Society and European Respiratory Society.
Skeletal muscle dysfunction in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 159 (1999), pp. S1-S40
[22.]
X. Xu, J. Zhou, Q. Yang, L. Fang, Q. Xie, Y. Shen.
An in vitro rat diaphragmatic fatigue model induced by combined hypoxic and hypercapnic acidosis and de effect of salmeterol.
Pharmacol Res, 53 (2006), pp. 171-176
[23.]
T. Vassilakopoulos, M. Divangahi, G. Rallis, O. Kishta, B. Petrof, A. Comtois, et al.
Differential cytokine gene expression in the diaphragm in response to strenuous resistive breathing.
Am J Respir Crit Care Med, 170 (2004), pp. 154-161
[24.]
M. Reid, J. Lannergren, H. Westerblad.
Respiratory and limb muscle weakness induced by tumor necrosis factor-alpha: involvement of muscle myofilaments.
Am J Respir Crit Care Med, 166 (2002), pp. 479-484
[25.]
H. Takahashi, T. Morichika, H. Iwagaki, T. Yoshino, R. Tamura, S. Saito, et al.
Effect of beta 2-adrenergic receptor stimulation on interleukin-18-induced intercellular adhesion molecule-1 expression and cytokine production.
J Pharmacol Exp Ther, 304 (2003), pp. 634-642
[26.]
K. Kuroki, H. Takahashi, H. Iwagaki, T. Murakami, M. Kuinose, S. Hamanaka, et al.
β2-adrenergic receptor stimulation-induced immunosuppressive effects possibly through down-regulation of co-stimulatory molecules, ICAM-1, CD40 and CD14 on monocytes.
J Int Med Res, 32 (2004), pp. 465-483
[27.]
A. Gillissen, M. Jaworska, B. Scharling, D. van Zwoll, G. Schultze-Werninghaus.
β2-agonists have antioxidant function in vitro. 1. Inhibition of superoxide anion, hydrogen peroxide, hypochlorous acid and hydroxyl radical.
Respiration, 64 (1997), pp. 16-22
[28.]
K. Zwicker, W. Damerau, S. Dikalov, H. Scholtyssek, I. Schimke, G. Zimmer.
Superoxide radical scavenging by phenolic bronchodilators under aprotic and aqueous conditions.
Biochem Pharmacol, 56 (1998), pp. 301-305
[29.]
Z. Nazir Mirza, M. Kato, H. Kimura, A. Tachibana, T. Fujiu, M. Suzuki, et al.
Fenoterol inhibits superoxide anion generation by human polymorphonuclear leukocytes via Beta-2-adrenoceptor-dependent and -independent mechanisms.
Ann Allergy Asthma Immunol, 88 (2002), pp. 494-500
[30.]
J. Choo, M. Horan, A. Little, N. Rothwell.
Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2 adrenoceptor activation.
Am J Physiol, 263 (1992), pp. E50-E56
[31.]
T. Yimlamai, S. Dodd, S. Borst, S. Park.
Clenbuterol induces muscle-specific attenuation of atrophy through effects on the ubiquitin-proteasome pathway.
J Appl Physiol, 99 (2005), pp. 71-80
[32.]
S. Busquets, M. Figueras, G. Fuster, V. Almendro, R. Moore-Carrasco, E. Ametller, et al.
Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting.
Cancer Res, 64 (2004), pp. 6725-6731
Copyright © 2009. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?