Journal Information
Vol. 40. Issue 2.
Pages 54-61 (February 2004)
Share
Share
Download PDF
More article options
Vol. 40. Issue 2.
Pages 54-61 (February 2004)
Full text access
Limitación a la tolerancia al ejercicio en pacientes con EPOC a la altura de Bogotá (2.640 m). Patrón respiratorio y gasometría arterial en reposo y en ejercicio pico
Exercise Limitation in Patients WithChronic Obstructive Pulmonary Disease at the Altitude of Bogota(2640 m). Breathing Pattern and Arterial Gases at Rest and Peak Exercise
Visits
15189
M. González-García
Corresponding author
mgonzalez@neumologica.org

Correspondencia: Calle 163 A, 28–60. Bogotá. Colombia.
, M. Barrero, D. Maldonado
Laboratorio de Fisiología y Función Pulmonar. Fundación Neumológica Colombiana. Bogotá. Colombia.
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Objetivo

Describir la respuesta al ejercicio en sujetos normales y en pacientes con enfermedad pulmonar obstruc-tiva crónica (EPOC) en Bogotá (altura: 2.640m; presión at-mosférica: 560mmHg) y establecer diferencias con los datos publicados de pacientes con dicha enfermedad a nivel del mar. Las personas sanas a esta altura aumentan la ventila-ción alveolar para atenuar la hipoxemia (presión arterial de CO2: 30mmHg; presión arterial de O2: 63mmHg).

Material y método

Se realizó un estudio descriptivo en pa-cientes con EPOC y en sujetos sanos. La capacidad de ejercicio se determinó con una prueba incremental en un cicloergómetro.

Resultados

Se incluyó en el estudio a 16 sujetos sanos y 25 pacientes con EPOC (volumen espiratorio forzado en el primer segundo del 43,3 ± 13%). En comparación con los sujetos sanos, en los pacientes con EPOC se observó un au-mento de la ventilación minuto en reposo que no se mantuvo adecuadamente en el ejercicio, así como disminución del con-sumo de oxígeno pico (53,0 ± 15%). En ejercicio pico la capa-cidad inspiratoria disminuyó (−0,62 ± 0,34 l), la relación ven-tilación minuto/ventilación voluntaria máxima aumentó y hubo una intensa hipoxemia (presión arterial de O2de 49,9 ± 9,9mmHg). Esta hipoxemia se correlacionó significativa-mente con el porcentaje del valor predicho del consumo de oxígeno pico (r=0,60), la fatiga de los miembros inferiores (r=−0,62), el porcentaje predicho de la capacidad inspiratoria pico (r=0,61) y el porcentaje predicho del volumen corriente pico (r=0,49). En comparación con los datos publicados a nivel del mar, en los pacientes con EPOC la ventilación mi-nuto en reposo fue mayor, hubo una mayor disminución de la capacidad inspiratoria durante el ejercicio y la hipoxemia fue más grave tanto en reposo como en ejercicio.

Conclusiones

En los pacientes con EPOC residentes en Bogotá demostramos intolerancia al ejercicio determinada por limitación ventilatoria e hipoxemia severa. El aumento de la ven-tilación minuto en reposo, la mayor disminución de la capacidad inspiratoria y la gravedad de la hipoxemia durante el ejercicio fueron las principales diferencias con la EPOC a nivel del mar.

Palabras clave:
Enfermedad pulmonar obstructiva crónica
Ejercicio
Hiperinflación pulmonar
Patrón respiratorio
Gases arteriales
Altitud
Objective

To describe the response to exercise of normal subjects and patients with chronic obstructive pulmonary disease (COPD) in Bogota, Colombia (altitude: 2640m; at-mospheric pressure: 560mm Hg) and compare it with data published on COPD patients at sea level. Healthy people in-crease their minute ventilation to attenuate hypoxemia (PaCO2: 30mm Hg; PaO2: 63mm Hg).

Material And Method

A descriptive study was carried out on healthy subjects and COPD patients. Exercise limita-tion was determined by an incremental test on a cycle ergo-meter.

Results

The study enrolled 16 healthy subjects and 25 COPD patients (forced expiratory volume in 1 second: 43.3% [SD 13%]). Minute ventilation at rest was greater in COPD patients compared with healthy subjects, it was not adequa-tely sustained during exercise, and there was a reduction in peak oxygen uptake (53.0% [15%]). At peak exercise, inspi-ratory capacity decreased (−0.62 [0.34] L), the ratio of minu-te ventilation to maximal voluntary ventilation increased, and severe hypoxemia occurred (PaO2: 49.9 [9.9]mm Hg). There was significant correlation between hypoxemia and the percentage of predicted peak oxygen uptake (r=0.60), leg fatigue (r=−0.62), percentage of predicted peak inspiratory capacity (r=0.61), and the percentage of predicted peak tidal volume (r=0.49). Minute ventilation at rest was shown to be higher, there was a greater reduction in the inspiratory ca-pacity during exercise, and hypoxemia was more severe at rest and during exercise for patients with COPD in Bogota, compared with those at sea level.

Conclusions

Patients with COPD living in Bogota were shown to have lower tolerance to exercise evidenced by ven-tilatory limitation and severe hypoxemia. Increased minute ventilation at rest, greater reduction in inspiratory capacity, and severity of hypoxemia during exercise were the main differences between COPD in Bogota and at sea level.

Keywords:
Chronic obstructive pulmonary disease
Exercise
Dynamic hyperinflation
Breathing pattern
Arterial blood gases
Altitude
Full text is only aviable in PDF
Bibliografía
[1.]
D.E. O'Donell.
Exercise limitation and clinical exercise testing in chronic obstructive pulmonary disease.
Clinical exercise testing, pp. 138-158
[2.]
L. Nici.
Mechanisms and measures of exercise intolerance in chronic obstructive pulmonary disease.
Clin Chest Med, 2 (2000), pp. 693-704
[3.]
C.G. Gallagher.
Exercise limitation and clinical exercise testing in chronic obstructive pulmonary diseases.
Clin Chest Med, 15 (1994), pp. 305-326
[4.]
A.G.N. Agusti, J. Cotes, P.D. Wagner.
Responses to exercise in lung disease.
pp. 32-50
[5.]
L.E. Acevedo, I. Solarte.
Gasimetría arterial en adultos sanos a nivel de Bogotá.
Acta Médica Colombiana, 9 (1984), pp. 7-14
[6.]
J. Roa, S. De Arroyo, M.C. Salcedo, D. Maldonado.
Gasimetría arterial a diferentes edades en Bogotá.
Acta Médica Colombiana, 13 (1988), pp. 415A
[7.]
D.J. Pierson.
Pathophysiology and clinical effects of chronic hypoxia.
Respir Care, 45 (2000), pp. 39-51
[8.]
W. MacNee.
Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part one.
Am J Respir Crit Care Med, 150 (1994), pp. 833-852
[9.]
ATS.
Standardization of spirometry: 1994 update.
Am J Respir Crit Care Med, 152 (1995), pp. 1107-1136
[10.]
American Thoracic Society.
Single breath carbon monoxide diffusing capacity (transfer factor).
Am J Respir Crit Care Med, 152 (1995), pp. 2185-2198
[11.]
J.E. Hansen, D.Y. Sue, K. Waserman.
Predicted values for clinical exercise testing.
Am Rev Respir Dis, 129 (1984), pp. S49-S55
[12.]
K. Waserman, J.E. Hansen, D.Y. Sue, R. Casabury, B.J. Whipp.
Normal values.
Principles of exercise testing and interpretation, 3rd ed, pp. 143-164
[13.]
J. Roca, F. Burgos, P. Casan, F. Ortega, L. Puente-Maestu, B. Togores.
Normativa SEPAR. Pruebas de ejercicio cardiopulmonar.
Arch Bronconeumol, 37 (2001), pp. 247-268
[14.]
R. Zeballos, I.M. Weisman.
Behind the scenes of cardiopulmonary exercise testing.
Clin Chest Med, 15 (1994), pp. 193-213
[15.]
G.A. Borg.
Psychophysical bases of perceived exertion.
Med Sci Sports Exerc, 14 (1982), pp. 377-381
[16.]
B.D. Johnson, I.M. Weisman, R.J. Zeballos, K.C. Beck.
Emerging concepts in the evaluation of ventilatory limitation during exercise: the exercise tidal flow-volume loop.
Chest, 116 (1999), pp. 488-503
[17.]
T. Dolmage, R. Goldstein.
Repeatebility of inspiratory capacity during incremental exercise in patients with severe COPD.
Chest, 121 (2002), pp. 708-714
[18.]
S. Yan, D. Kaminski, P. Sliwinski.
Reliability of inspiratory capacity for estimating end-expiratory lung volume changes during exercise in patients with chronic obstructive pulmonary disease.
Am J Resp Crit Care Med, 156 (1997), pp. 55-59
[19.]
J. Marín, S. Carrizo, M. Gascón, A. Sánchez, B. Gallego, B. Celli.
Inspiratory capacity, dynamic hyperinflation, breathlessness, and exercise performance during the 6-minute-walk test in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 163 (2001), pp. 1395-1399
[20.]
D.E. O'Donell, D'Arsigny, K.A. Webb.
Effects of hyperoxia on ventilatory limitation during exercise in advanced chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 163 (2001), pp. 892-898
[21.]
G.L. Snider.
Enhancement of exercise performance in COPD patients with hyperoxia.
Chest, 122 (2002), pp. 1830-1836
[22.]
O. Díaz, H. Villafranca, H. Ghezzo, G. Borzone, A. Leiva, J. Millic- Emili, et al.
Breathing pattern and gas exchange at peak exercise in COPD patients with and without flow limitation at rest.
Eur Respir J, 17 (2001), pp. 1120-1127
[23.]
J. Milic-Emili, M.M. Grunstein.
Drive and timing components of ventilation.
Chest, 70 (1976), pp. 131-133
[24.]
F.G. Lind, A.B. Truve, B.P.O. Linborg.
Microcomputer-assisted online measurement of breathing pattern and occlusion pressure.
J Appl Physiol, 56 (1984), pp. 235-239
[25.]
D.H. Lederer, M.D. Altose, S.G. Kelsen, N.S. Cherniack.
Comparison of occlusion pressure and ventilatory responses.
Thorax, 32 (1977), pp. 212-220
[26.]
P. Begin, A. Grassino.
Inspiratory muscle dysfunction and chronic hypercapnia in chronic obstructive pulmonary disease.
Am Rev Respis Dis, 143 (1991), pp. 905-912
[27.]
A. De Troyer, J.B. Leeper, D.K. McKenzie, S.C. Gandevia.
Neural drive to the diaphragm in patients with severe COPD.
Am J Respir Crit Care Med, 155 (1997), pp. 1335-1340
[28.]
R.W. Light, C.K. Mahutte, S.E. Brown.
Etiology of carbon dioxide retention ay rest and during exercise in chronic airflow obstruction.
Chest, 94 (1988), pp. 61-67
[29.]
D.E. O'Donell, M. Lam, K.A. Webb.
Measurement of symptoms, lung hyperinflation and endurance during exercise in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 158 (1998), pp. 1557-1565
[30.]
D.E. O'Donell, S.M. Revill, K.A. Weeb.
Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 164 (2001), pp. 770-777
[31.]
T.J. LoRusso, M.J. Belman, J.D. Elashoff.
Prediction of maximal exercise capacity in obstructive and restrictive pulmonary disease.
Chest, 104 (1993), pp. 1748-1758
[32.]
M. Montes de Oca, J. Rassulo, B. Celli.
Respiratory muscle and cardiopulmonary function during exercise in very severe COPD.
Am J Respir Crit Care Med, 154 (1996), pp. 1284-1289
[33.]
R.W. Light, W.M. Mintz, G.S. Linden, S.E. Brow.
Hemodinamics of patients with severe chronic obstructive pulmonary disease during progressive upright exercise.
Am Rev Respir Dis, 130 (1998), pp. 391-395
[34.]
R.A. Mathay, H.J. Berger, R.A. Davies, J. Loke, D.A. Mahler, A. Gottschalk, et al.
Right and left ventricular exercise performance in chronic obstructive pulmonary disease: radionuclide assessment.
Ann Inter Med, 93 (1980), pp. 234-239
[35.]
C.D. Vizza, J.P. Lynch, L.L. Ochoa, G. Richardson, E.P. Trulock.
Right and left ventricular dysfunction in patients with severe pulmonary disease.
Chest, 113 (1988), pp. 576-583
[36.]
A.G. Agustí, J.A. Barbera, J. Roca, P.D. Wagner, R. Guitart, R. Rodríguez- Rasin.
Hypoxic pulmonary vasoconstriction and gas exchange during exercise in chronic obstructive pulmonary disease.
Chest, 97 (1990), pp. 268-275
[37.]
M. Bedu, H. Giraldo, H. Janicot, N. Fellmann, J. Coudert.
Interaction between cold and hypoxia on pulmonary circulation in COPD.
Am J Respir Crit Care Med, 153 (1996), pp. 1247-1257
[38.]
P.D. Wagner.
Ventilation-perfusion matching during exercise.
Chest, 101 (1992), pp. 192S-198S
[39.]
F. Maltais, P. Leblanc, C. Simard.
Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 154 (1996), pp. 442-447
[40.]
American Thoracic Society/European Respiratory Society.
Skeletal muscle dysfunction in chronic obstructive pulmonary disease: a statement of the American Thoracic Society and European Respiratory Society.
Am J Respir Crit Care Med, 159(Suppl) (1999), pp. 1-40
[41.]
Gosselink, T. Troosters, M. Decramer.
Peripheral muscle weakness contributes to exercise limitation in COPD.
Am J Respir Crit Care Med, 153 (1996), pp. 976
[42.]
F. Maltais, P. LeBlanc, J. Jobin, R. Casabury.
Peripheral muscle dysfunction in chronic obstructive pulmonary disease.
Clin Chest Med, 21 (2000), pp. 665-677
Copyright © 2004. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?