A Simple Procedure to Measure the Tidal Volume Delivered by Mechanical Ventilators: A Tool for Bedside Verification and Quality Control

To the Director,

Mechanical ventilation is the most extensively employed life support intervention among patients with severe respiratory failure of different etiologies. In this context, consistent delivery of the most suitable tidal volume (VT) to the patient is critical to achieving personalized mechanical ventilation. Indeed, in addition to its contribution to minute volume for optimization of blood gas exchange, appropriate VT strategies are critical to avoid ventilator-induced lung injury in the general context of lung-protective ventilation and when specifically applying ultra-low tidal volume ventilation. Additionally, VT is required to compute respiratory system compliance or ventilatory ratio, useful indices in the classification of patient phenotype and estimation of prognosis.

Whereas measuring the pressures characterizing mechanical ventilation (e.g., peak inspiratory or positive end-expiratory pressures) is direct and straightforward using pressure transducers, actual VT measurements are complex since several computations are required. First, correct calibration values are required for the flow measuring device (usually a pneumotachograph) according to the oxygen fraction being used. For instance, to avoid a 12.5% volume overestimation when changing ventilation from room air to oxygen, the ventilator should automatically correct for the change in pneumotachograph resistance caused by the changes in gas viscosity. Second, correction for the compressibility of the ventilator circuit is essential since a fraction of the inspiratory volume measured at the ventilator outlet is shunted by compression and thus not delivered to the patient. For a typical value of ventilator circuit compliance (2 mL/cmH2O) and an inspiratory pressure of 25 cmH2O, the volume of shunted air is 50 mL (~10% of the typical VT). Remarkably, changes in the circuit compliance (e.g. inadvertent modification of tubing or humidifier dimensions) must be taken into account for correction, otherwise, these may result in substantial VT errors. Third, correction of VT according to the gas physical conditions is also needed since the inspiratory volume primarily measured by the ventilator corresponds to the device temperature and humidity, which are different from those within the patient lung (37°C and 100% relative humidity). Indeed, there is a 12.3% increase in VT when comparing dry air at 20°C in a ventilator and the corresponding VT in the patient lung.

Therefore, knowing the actual VT in the patient’s lungs is contingent on the implementation of ventilator algorithms to compute the three aforementioned corrective steps, each potentially amounting to more than 10% variance in the actual vs. calculated VT. In many instances, the clinicians will be unaware of whether and how the ventilator algorithms operate because they are commonly proprietary and generally undisclosed, and their implementation and results may differ among manufacturers. In other situations, and regardless of the ventilator type being used, errors in measured VT occur even in a priori well-maintained devices and are particularly frequent in low- and middle-income countries (LMIC).

Assessment of the actual VT values delivered by the ventilator can be carried out by commercially available systems specially designed for this purpose. However, such devices are based on measuring VT using a pneumotachograph and a built-in microprocessor. Therefore, they are relatively expensive and require periodic servicing/recalibration as indicated by their manufacturer’s instructions, prompting their limited use in low-resource medical centers. Thus, having an inexpensive and straightforward procedure for verifying the VT delivered by the ventilator at the bedside would be very useful for regular checks and quality controls in both resource-rich and resource-poor ICUs. Moreover, such capability can be particularly helpful when alternative ventilators must be rapidly set up, such as during the critical months of the COVID-19 pandemic.

We herein describe an inexpensive and straightforward procedure that can be readily followed by clinical staff who are not experts in instrumentation techniques. Notably, the method does not require additional electronic sensors or complex devices. It directly measures the VT applied by the ventilator, thereby avoiding all the corrections and uncertainties associated with flow measurement and its attendant correction algorithms. As shown in Fig. 1A, a resistance and bag simulating a patient (test lung) is enclosed in a water-filled rigid-wall chamber. The VT applied by the test ventilator is measured from the difference in water levels (Δh) along the ventilator cycle, for instance during end-inspiration and end-expiration pauses. Indeed, \(V_T = S \cdot \Delta h \), where \(S \) is the internal section of the vertical tube to measure h. The VT measured by water displacement is the \(V_T \) applied by the ventilator to the simulated patient, measured at the conditions of the ventilator air, i.e., room temperature and humidity (0% for dry air from a compressed air supply or room humidity for turbine-based ventilators). This actual VT is the reference value to be compared with the \(V_T \) measured by the ventilator.

As a practical example particularly interesting for potential users in LMIC, Fig. 1B shows a low-cost chamber implementation made using 15-cm diameter PVC tubing components that are widely available in hardware stores. In practical terms, the test lung (Fig. 1A) simply plays the role of an arbitrary patient impedance subjected to ventilation. As the method described herein is aimed at comparing the VT measured by the ventilator with its actual value measured by water displacement, the specific resistance and compliance of the simulated patient are not relevant provided they are within realistic boundaries, making it easy to choose among different options. For instance, we included a low-cost setting consisting of an orifice-type resistance (12.1 cmH2O s/L at 0.3 L/s; like
In conclusion, we describe the concept and implementation of a simple and inexpensive method to measure the tidal volume delivered by a mechanical ventilator. As the procedure is straightforward and does not require complex equipment, clinical staff can perform such estimates in the ICU at the patient’s bedside. The method can help verify the accuracy of V_t in otherwise well-serviced settings and can be a realistic and easily implementable quality control procedure in MICUs where routine maintenance of medical devices is not necessarily widely available.

References

Ramon Farré a, b, c, d, Antonio Artigas b, d, Antoni Torres b, c, e, Guillermo M. Albaceta f, g, Anh Tuan Dinh-Xuan f, David Gozal b

a Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
b CIBER de Enfermedades Respiratorias, Madrid, Spain
c Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
d Corporació Sanitària Universitària Parc Taulí, I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
e Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
f Unidad de Cuidados Intensivos Cardiológicos. Hospital Universitario Central de Asturias, Oviedo, Spain
g Service de Physiologie-Explorations Fonctionnelles, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
h Department of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA

Corresponding author.
E-mail address: rfarre@ub.edu (R. Farré).