Editorial

Augmentation Therapy for Emphysema due to Alpha-1 Antitrypsin Deficiency: Pro

Tratamiento aumentativo para el enfisema por déficit de alfa-1 antitripsina: Pro

Miriam Barrecheguren, a Marc Miravitlles b, *

a Servicio de Neumología, Hospital Universitari Vall d’Hebron, Barcelona, Spain
b CIBER de Enfermedades Respiratorias (CIBERES), Spain

Alpha-1 antitrypsin deficiency (AATD) is a hereditary disease characterized by low plasma levels of alpha-1 antitrypsin (AAT) and an increased risk of developing liver disease and pulmonary emphysema. AAT protects the lung tissue from destruction by elastase released by the neutrophils, so individuals with serum AAT concentrations below 0.50 g/l have a high risk of developing emphysema, particularly if they are smokers.

The only specific treatment available to date has been intravenous infusion of purified AAT derived from donor plasma. The aim of this therapy is restore AAT to normal levels, in order to inhibit the destructive action of proteases and thus prevent or decelerate the development of emphysema.1

This augmentation therapy has been shown to be effective, both biochemically and clinically. Biochemical efficacy is demonstrated by protective levels of AAT being maintained in blood and lung tissue,2 and by the inhibition of elastase in the lung.3 Moreover, this in vivo anti-elastase activity is confirmed by a reduction in urinary levels of desmosine and isodesmosine, indirect markers of elastin degradation in the lung and, thus, markers of reduced lung tissue destruction.4 Clinical evidence of this phenomenon is demonstrated by a change in the natural history of the disease, as observed in the 3 clinical trials conducted to date.5–7 Initially, 2 trials with small patient numbers5 showed a reduction in lung density loss measured by computed tomography (CT) in patients receiving replacement therapy compared to placebo. Although the differences in both studies were at the limit of statistical significance due to the small sample size, a combined analysis found that replacement treatment was statistically highly superior.5

More recently, the RAPID study confirmed the efficacy of replacement therapy in preserving the pulmonary parenchyma.5 This study, the largest conducted to date, included 180 patients with AATD and FEV1 35%–70%, randomized to receive replacement therapy or placebo for 2 years. Results showed that augmentation treatment delayed lung density loss. Moreover, in a 2-year open-label extension of the same study in which all patients received active treatment,7 lung density loss decelerated significantly and to the same extent in patients who had previously received placebo (late treatment starters) and treatment (early treatment starters). However, lung density lost by the late starters during the first phase of the study was not recovered. This reduction in lung tissue loss has been also extrapolated to improved survival, with an estimated gain of 5.6 life years.8 These data are consistent with results obtained from the American registry, which reported a significant reduction in mortality in severely ill patients who received treatment.9 This increase in survival has been used to calculate the cost-effectiveness of augmentation therapy.10 Using an estimated gain of between 7.4 and 10.6 years of life years with augmentation treatment according to sex and smoking habit, the cost per year of life gained is between $59 234 and $248 361. While this may appear high at first glance, the cost/effectiveness ratio is similar to other widely used treatments, such as simvastatin for the prevention of ischemic heart disease at $195 000 per year of life gained.10

Why are questions still being raised about augmentation therapy?11 Mainly because we are trying to evaluate its clinical efficacy using the same criteria applied to drug treatment for chronic obstructive pulmonary disease (COPD). If we base our conclusions on rate of decline of FEV1 as the primary outcome of treatment efficacy, a great many patients will be needed to achieve significant statistical power.12 For example, the primary outcome of the UPLIFT study was to evaluate the rate of decline of FEV1, and for that 6000 patients were required.11 Obviously, this sample size is impossible to achieve with a rare disease like AATD. For the same reason, it is equally unfeasible to conduct a study powered to analyze mortality.12

Another argument against this therapy is its ineffectiveness against other COPD variables, such as exacerbations. Although AAT can inhibit the growth of certain bacteria,13 its antiprotease mechanism does not suggest that it could be beneficial in the prevention of exacerbations. Moreover, a much greater number of patients than those included in the AAT studies would be required to design a study evaluating exacerbations. Augmentation therapy has also failed to show benefits in patient-reported outcomes, such as dyspnea or physical activity,
but this should not be surprising given that AAT replacement is not a
symptomatic treatment. In this respect, emphysema could be com-
pared to osteoporosis, another disease caused by tissue destruction,
in which treatment efficacy is determined mainly by densitometry
and not by clinical parameters. AAT treatment efficacy should also
be measured by lung densitometry, which is also the best predictor
of mortality.1

More important evidence in favor of the efficacy of this treat-
ment derives from a post hoc analysis of the RAPID study, which
showed that the magnitude of lung tissue loss is inversely related
with AAT levels achieved during augmentation therapy. These
data on the dose/response effect of the treatment reaffirm its effi-
cacy, and have prompted the design of clinical trials using higher
doses of AAT.15

In conclusion, augmentation therapy has proven its efficacy
in reducing loss of lung density and, as such, the progression of
emphysema. Clinical trials available to date have shown consistent
results and provide sufficient evidence to support the use of this
therapy in AATD patients with emphysema. The lack of evidence
of its impact on clinical variables such as exacerbations or symp-
toms must not be used as an argument against its use, since this is
an etiological approach rather than a symptomatic treatment, and
accordingly, cannot be expected to affect those variables. For this
reason, national and international guidelines1,16 recommend the
use of augmentation therapy in AATD patients with emphysema
who meet the established criteria.

Conflict of Interests

Miriam Barrecheugren has received fees for speaking engage-
ments from Grifols and Marc Miravitlles has received fees for
speaking engagements from Grifols and CSL Behring and for
consultancy services from Grifols.

References

European Respiratory Society statement: diagnosis and treatment of pulmonary
Replacement therapy for alpha 1-antitrypsin deficiency associated with emphy-
3. Stockley RA, Bayley DL, Unsal I, Dowson LJ. The effect of augmentation therapy
on bronchial inflammation in α1-antitrypsin deficiency. Am J Respir Crit Care
4. Ma S, Lin YY, He J, Rouhani FN, Brantly M, Turino GM. Alpha-1 antitrypsin aug-
5. Stockley RA, Parr DC, Piitulainen E, Stolik J, Stoel BC, Dirksen A. Therapeutic effi-
cacy of alpha-1 antitrypsin augmentation therapy on the loss of lung tissue: an
integrated analysis of 2 randomized clinical trials using computed tomography.
6. Chapman KB, Burdon JG, Piitulainen E, Sandhaus RA, Seersholm N, Stocks JM,
et al. Intravenous augmentation treatment and lung density in severe alpha-1
antitrypsin deficiency (RAPID): a randomized, double-blind, placebo-controlled
Long-term efficacy and safety of alpha-1 proteinase inhibitor treatment for
emphysema caused by severe alpha-1 antitrypsin deficiency: an open label
8. Rahaghi FF, Miravitlles M. Long-term clinical outcomes following treatment
with alpha 1-proteinase inhibitor for COPD associated with alpha-1 antitrypsin
9. The Alpha-1 antitrypsin deficiency registry study group. Survival and FEV1
decline in individuals with severe deficiency of alpha-1 antitrypsin. Am J Respir
10. Sclar DA, Evans MA, Robison LM, Skaer TL. Alpha-1 proteinase inhibitor
(human) in the treatment of hereditary emphysema secondary to alpha-1 antitry-
psin deficiency, number and costs of years of life gained. Clin Drug Invest.
11. Gatzsche PC, Johansen HK. Intravenous alpha-1 antitrypsin augmentation ther-
apy for treating patients with alpha-1 antitrypsin deficiency and lung disease
Feasibility of a clinical trial of augmentation therapy for alpha-1 antitrypsin
Alpha-1 antitrypsin inhibits Moraxella catarrhalis MID protein-induced toll-like
15. Sorrells S, Campprubi S, Griffin R, Chen J, Ayguasanosa J. SPARTA clinical trial
design: exploring the efficacy and safety of two dose regimens of alpha1-
proteinase inhibitor augmentation therapy in alpha-1-antitrypsin deficiency.
Indications for active case searches and intravenous alpha-1 antitrypsin treatment
for patients with alpha-1 antitrypsin deficiency chronic obstructive pulmonary