has been shown to improve the accuracy of AATD diagnosis.\(^9\) Most
AATD study protocols use isoelectric focusing phenotyping as the
gold standard. However, in our case, we decided to use SERPINA1
gene sequencing, due to the limitations of phenotyping in the
identification of rare deficiency variants.\(^10\)

An interesting finding in our study was the yield obtained from
the combination of protein levels and PI*5 and PI*Z allele geno-
pyping (84.9%), which was lower than reported in the literature.\(^4\) This
low yield from the diagnostic protocol is due to the high preva-
lence of rare deficiency variants, particularly the mutation F76del
(PI*Mmalton and PI*Mpalermo) that accounts for 81.5% of the rare
variants encountered; this percentage is higher than described in
similar studies conducted in Spain.\(^11\) Moreover, in the 25 patients
who underwent SERPINA1 gene sequencing, we found 20 with NoS
NoZ/NoSnoZ, 4 with PI*S/NoSnoZ, and 1 with genotype PI*Z/NoSnoZ
with AAT plasma levels discordant for genotyping for the S and
Z alleles. Although they were candidates for SERPINA1 full-gene
sequencing, this was not performed as the technique was not avail-
able in our hospital at the time of the study. We should add that in 3
patients with mild-to-moderate AAT deficiency, no mutations were
detected, despite SERPINA1 full-gene sequencing. This may be due
to mutations in gene regulatory regions that were not studied,\(^12\)
or that mutations are undetectable by sequencing that require alter-
native techniques for diagnosis.\(^13\)

AATD is one of the most prevalent hereditary diseases in our
population, and the mutation F76del, like the PI*Z allele, has been
associated with the development of pulmonary emphysema and
liver disease.\(^14,15\) so we believe it is appropriate to detect these
mutations in all patients in whom it is impossible to obtain an
unequivocal diagnosis with the standard genetic protocols combin-
ing serum AAT levels, genotyping for deficiency alleles PI*S and
PI*Z, and phenotyping.

References

1. Vidal R, Blanco I, Casas F, Jardí R, Miravitlles M. Diagnóstico y tratamiento del
2. Stoller JK, Aboussouan LS. A review of α1-antitrypsin deficiency. Am J Respir Crit
3. De Serres FJ, Blanco I, Fernandez-Bustillo E. Genetic epidemiology of alpha-1
antitrypsin deficiency in southern Europe: France, Italy, Portugal and Spain. Clin
registry of patients with alpha-1 antitrypsin deficiency: database evaluation and
Pose M, Lara R. Detection of alpha-1 antitrypsin deficiency: a study on patients
diagnosed with chronic obstructive pulmonary disease in primary health care.
ANCA-associated vasculitis is linked to carriage of the Z allele of α1-antitrypsin
study of the population of Tenerife (Canary Islands, Spain): protein markers and
of alpha-1-antitrypsin deficiency: an algorithm of quantification, genotyping,
PINAt full-gene sequencing identifies rare mutations not detected in targeted
10. Sub-Lailam BB, Procter M, Krautschik P, Haas J, Kumar S, Mao R, et al. Chal-
lenging identification of a novel PiSZ and the rare PiMmaltonZ-1-antitrypsin
11. Rodríguez-Frias F, Miravitlles M, Vidal R, Camos S, Jardí R. Rare alpha-1-
haplotypes of SERPINA1 confer susceptibility to chronic obstructive pulmonary
13. Takahashi H, Crystal RG. Alpha 1-antitrypsin Null(isola di procida): an alpha-
1-antitrypsin deficiency allele caused by deletion of all alpha 1-antitrypsin coding
heterogeneity and potential high pathogenicity of the MnaltonZ alpha-1-
antitrypsin allele at the homozygous, compound heterozygous and heterozygous
states. Orphanet J Rare Dis. 2015;10:130.
15. Figuera Gonçalves JM, Martínez Bugallo F, Díaz Pérez D, Martín Martínez MD,
García-Talavera I. Déficit de alfa-1-antitripsina asociado a la variante Mnalton.

Francisco Martínez Bugallo, a Juan Marco Figueira Gonçalves, b María Dolores Martín Martínez, a David Díaz Pérez b

a Unidad de Diagnóstico Molecular, Servicio de Análisis Clínicos, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
b Servicio de Neumología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain

corresponding author.

E-mail address: fmabrug@gobiernodoccanarias.org (F. Martínez Bugallo).

1579-2129/ © 2017 SEPAR. Published by Elsevier España, S.L.U. All rights reserved.

Reversible Interferon-Induced Pulmonary Arterial Hypertension in a Patient With
Multiple Sclerosis

Hipertensión arterial pulmonar reversible en una paciente con
esclerosis múltiple asociada a tratamiento con interferón

To the Editor,

Interferon (IFN) is a drug with antiviral, antibacterial, and anti-
tumor activity, which is used in the treatment of chronic hepatitis
C virus infection (IFN-α) and multiple sclerosis (IFN-β) and is
currently considered a possible risk factor for pulmonary arterial
hypertension (PAH).\(^1,2\) This association is based on the observation
of isolated cases of PAH potentially associated with exposure to IFN-
α or IFN-β,\(^3,4\) some of which were reversible after discontinuing the
drug.\(^5,6\)

We report the case of a 31-year-old woman with no clinical
history of interest, diagnosed with multiple sclerosis in 2010, and
receiving subcutaneous IFN-β since then.

She was hospitalized in May 2016 due to dyspnea on exer-
ction and central chest pain; a few hours after admission, she
had an episode of syncope and hypotension, and was transferred
to the intensive care unit where an echocardiogram was per-
fomed, which revealed severe pulmonary hypertension probably
due to tricuspid regurgitation and right ventricular dilation. CT-
angiography was performed and no pulmonary embolism was
found.

Given these findings, treatment began with sildenafil and anti-
coagulation. Despite treatment, her progress was poor, and she was
referred to our unit for evaluation.
The initial physical examination showed blood pressure 114/90 mmHg without the need for vasoactive drugs, heart rate 110 bpm, SpO2 97% on 1 lpm oxygen, increased intensity of pulmonic second sound (P2), and presence of congestive signs.

The diagnosis was PAH with severe right ventricular involvement and secondary cardiorespiratory failure, and an investigation of the etiology began in line with European guidelines. Complete blood count and biochemistry results were normal, serology for hepatotropic viruses and HIV were negative, and autoimmunity was normal. Elevated pro-BNP values were observed (2680 pg/ml). Electrocardiogram showed sinus rhythm with evidence of right overload. Respiratory disease was ruled out by lung function tests and CT. DLO was 56.3 ml/min/mmHg. A 6-minute walk test (6MWT) was performed, in which the patient walked 450 m with an end saturation of 88%. Doppler ultrasound and V/Q scintigraphy were normal. The echocardiogram showed severe ventricular dilation with significant systolic dysfunction (TAPSE 12 mm and FAC 30%), free wall hypertrophy (7.5 mm), dilated right atrium and moderate tricuspid failure, with a 60 mmHg gradient, giving an estimated PaSp of 75 mmHg, mild pericardial effusion, dilated inferior vena cava, with no inspiratory collapse; left cavities were normal. Right heart catheterization (RHC) identified PAH: mPAP 59 mmHg, PCP 13 mmHg, CO 4.6 l/m, 60% SvO2, DBP 17 mmHg, RVP 10 WU, and negative vasoreactivity test.

In view of the patient's history and the results of the additional examinations, the administration of IFN was considered the most likely cause of the PAH. The patient was diagnosed as having severe PAH with an intermediate-high risk profile, so IFN-β was discontinued, and ambrisentan and inhaled iloprost were added to her initial treatment.

The patient was discharged 15 days after admission in a stable clinical condition with significant functional improvement. After 6 months of follow-up, her functional class was I/IV, pro-BNP had normalized (56 pg/ml), follow-up 6MWT, at 555 m without desaturation, had improved, and echocardiography showed significant improvement, with normalization of right heart morphology and function. A follow-up RHC in December 2016 showed mPAP 32 mmHg, PCP 12 mmHg, CO 7.8 l/m, DBP 5 mmHg and RVP 3.2 WU.

PAH associated with IFN treatment is a rare entity with few published cases, and should be considered in all patients receiving IFN who develop dyspnea with no other identifiable cause. The first case was published in 1993, although the diagnosis of PAH was made without hemodynamic confirmation. More recently, the French group has published a retrospective analysis of 53 cases of PAH with history of exposure to IFN, receiving IFN-α for chronic hepatitis C and 5 receiving IFN-β for multiple sclerosis. Most patients in the first group had another risk factor associated with PAH (85% portal hypertension and 56% HIV), and in the second group, 1 patient had an atrial septal defect. In most cases the diagnosis was made within 3 years of starting treatment with IFN.

Sixteen patients continued treatment with IFN after the diagnosis of PAH was established. This treatment was associated with a functional and hemodynamic decline that required additional PAH treatment, suggesting that IFN could act as a factor triggering the development of PAH, even in the presence of other known or undiagnosed predisposing factors.

According to current evidence, IFN-β-induced PAH is less common and differs in some aspects: 13 cases have been published since 2009, most of which lacked risk factors for PAH, all were women, and the period between exposure and the onset of symptoms was greater (1–15 years). PAH was severe in all cases, and most required combined treatment. Our patient had no other known concomitant factors, and while it is true that, according to her sex and age, her PAH may have been idiopathic, our suspicion that it was caused by IFN is based on the following: 1) the cause-and-effect relationship with the development of pulmonary vascular disease after 5 years of IFN exposure; 2) the significant improvement after discontinuing IFN, that can hardly be explained by the use of specific vasodilator treatment.

In spite of cases like ours and the data available from basic research studies suggesting that the IFN may be involved in the development of PAH, the role of IFN in PAH is still unclear, so it must be considered as a possible risk factor. Prospective case–control studies will be necessary to definitively establish the relationship between IFN exposure and PAH, and experimental research is needed for the in-depth study of the underlying physiopathological mechanism.

References


Alberto García Ortega, Raquel López Reyes,* Ana Torres Vilar, Enrique Zaldívar Olmeda, Marcos Prado Barragan

Servicio de Neumología, Hospital Universitari i Politècnic La Fe, Valencia, Spain

*Corresponding author.
E-mail address: raquel.lopez@separ.es (R. López Reyes).

1579-2129/© 2017 SEPAR. Published by Elsevier España, S.L.U. All rights reserved.