Initial treatment is i.v., with maximum doses for 4–6 weeks followed by oral treatment for a further 6 to 12 months. Penicillin is the drug of choice, although tetracycline, erythromycin or clindamycin may be also used in patients who are allergic to penicillin. Chest involvement usually requires more prolonged treatment than involvement at any other level. There are specific indications for surgery; as this alone is not curative, it must always be combined with prolonged high-dose antibiotic treatment.2,5

When diagnosed and treated promptly, the prognosis is good, with low mortality.2

Thus, pleural effusion with chest wall involvement in a patient with a history of laparoscopic cholecystectomy could be secondary to abdominal infection by Actinomyces.

References

Rocio Magdalena Díaz Campos.1,∗ Francisco López-Medrano,b Antonio Lalueza,b Fernando Granados Caballero,c Victoria Villena Garridoa

a Servicio de Neumología, Hospital Universitario 12 de Octubre, Madrid, Spain
b Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario 12 de Octubre, Madrid, Spain
c Servicio de Radiología, Hospital Universitario 12 de Octubre, Madrid, Spain

∗ Corresponding author.
E-mail address: rociomdc80@gmail.com (R.M. Díaz Campos).

Mortality in Obesity-hypoventilation Syndrome and Prognostic Risk Factors

Mortalidad en el síndrome de obesidad-hipoventilación y factores de riesgo pronóstico

To the Editor:

The clinical presentation of patients with obesity-hypoventilation syndrome (OHS) is heterogeneous in terms of severity, ranging from those with few symptoms referred for suspected sleep apnea–hypopnea syndrome (SAHS), to those diagnosed after admission to an intensive care unit for hypercapnic encephalopathy. Published clinical series indicate that OHS is associated with major morbidity and mortality, with respiratory or cardiovascular failure causing fatal outcome. It is likely that failure to suspect the respiratory disorder together with cardiovascular comorbidity at the time of diagnosis contribute to an unfavorable prognosis in specific patients.1–4

Several observational series estimating mortality in this group and identifying associated risk factors have been published.1–4 Ojeda Castillolejo et al. recently published an interesting prospective study in Archivos de Bronconeumología on the evolution of patients with OHS, and we would like to comment on several aspects of this study.5 This study has probably the longest follow-up time (mean >7 years) of those hitherto published; patients were closely monitored, and seemingly appropriate ventilation criteria were established. As regards results, the authors found that the OHS group without SAHS had higher mortality, and that, in contrast to earlier studies, persistence of reduced forced vital capacity (FVC) had prognostic value. Moreover, and contrary to what might be expected,2–4 they found that baseline PaO2 had no prognostic value. Although the results of studies such as this are relevant and necessary to understand the natural history of patients with OHS, the absence of some data limits interpretation of the results:

1. Patients were recruited either after they had been stabi-

lized following hospital admission for respiratory acidosis, or
during a visit to the clinic. Hospitalized patients may have more
comorbidities than those recruited in the clinic.3,4 However, the
authors do not provide data on comorbidities.
2. In the mortality analysis, the authors do not indicate if they
included patients who did not comply with non-invasive
mechanical ventilation (NIV) or continued positive airway pres-
sure (CPAP) therapy—a total of 9 subjects. This is another relevant
detail, as lack of compliance has been associated with higher
mortality.1,3 The distribution of non-compliers by patient group
is also unknown.
3. The many causes of hypoxemia under NIV include cen-
tral hypoventilation and ventilation/perfusion disorders. In
this respect, there are clinical practice guidelines that rec-
ommend a support pressure setting of at least 10 mmHg
(inspiratory positive airway pressure [IPAP]—expiratory posi-
tive airway pressure [EPAP]) before assessing whether oxygen
should be added. In the paper by Ojeda Castillolejo et al.,
it is not clear if this consideration has been taken into
account.
4. ANOVA or the Student’s t-test with Bonferroni correction
is more appropriate for a comparative analysis of PVC values over
time.

To summarize, to estimate prognostic factors of mortality in
patients with OHS, NIV or CPAP settings must be correct, and a
detailed study of potentially relevant risk factors should be made.
Additionally, and while awaiting the results of ongoing studies, it
will be interesting to see if nocturnal monitoring of NIV in poor
responders (by analyzing the ventilator software with or without
simultaneous polygraphy) will have a positive effect on their qual-
ity of life and prognosis for survival.

Funding

The authors did not receive any funding for writing this
manuscript.

Conflict of Interest

The authors declare that they have no conflict of interests.
Abdominal Findings in Lymphangioleiomyomatosis: A Report of Two Cases

Patología abdominal asociada a la linfangioleiomiomatosis

To the Editor,

Lymphangioleiomyomatosis (LAM) is a rare interstitial lung disease that mostly affects women, and is characterized histologically by the proliferation of atypical smooth muscle cells in the lymphatic system. Radiologically, LAM in the lung parenchyma is characterized by the presence of multiple pulmonary cysts (Fig. 1a). Abdominal findings associated with LAM are less well known, although they have been described in up to 70% of patients. The most common is renal angiomyolipoma (AML), which can appear in 20%–54% of cases. Other findings are lymphangioleiomyomas, lymphadenopathies and chylous ascites.¹

To draw attention to these abdominal findings, and to recognize their clinical importance, we present 2 cases of LAM associated with abdominal disease.

The first case is that of a 42-year-old woman who presented clinically with a pneumothorax that required a chest drain. During the same procedure, cysts were removed from the apex of the lung, with a histological diagnosis of LAM cysts. A subsequent chest computed tomography (CT) incidentally detected a right renal mass (Fig. 1b). The mass was exophytic, with homogeneous density, measuring about 4-cm, and did not contain fat. Radiologically, it corresponded to an indeterminate renal mass, but given that the patient had already been diagnosed with LAM, and that fat was not evident within the mass, it was suggested that it could be consistent with an atypical AML. A percutaneous biopsy performed to rule out

Fig. 1. Radiological findings in the case, characterized by (A) multiple pulmonary cysts, (B) a right renal mass (yellow arrow), and (C) multiple round cystic lesions in the retroperitoneum (yellow arrows) and pelvis.

¹ Please cite this article as: Gómez Herrero H, Sánchez Rodríguez C, Gargallo Vaamonde A. Patología abdominal asociada a la linfangioleiomiomatosis. Arch Bronconeumol. 2015;51:421–422.