Effect of Drug-Targeting Nebulization on Lung Delivery

Efecto de la nebulización dirigida de fármacos en la administración pulmonar

To the Editor:

It has been difficult to develop more effective nebulizers for the improved delivery of drugs directly to the lungs. Adaptive nebulizers were designed for the administration of drugs at a specific time during inspiration, depending on the intended target (drug-targeting nebulization). Controlled inhalation nebulizers, such as AKITA®, have recently become another addition to adaptive aerosol delivery systems.¹ The aim of our study was to measure the inhaled dose and pulmonary bioavailability obtained from drug-targeting nebulization, compared to conventional continuous nebulization.

We used the AKITA® delivery device (Activeaero; Germany) that provides individualized, controlled flow and inhalation volumes in several puffs. Aerosolized drug delivery was either continuous or targeted (Fig. 1) during each 4-s controlled inhalation. The number of inhalations was 43 or 86, respectively.

The inhaled dose of a solution of amikacin (125 mg/ml) was measured in vitro using a residual gravimetric method.² Five healthy non-smoking male volunteers (mean age 27.8 ± 4.7 years) were selected, and approval was obtained from the ethics committee.

Subjects were randomized to receive a solution of salbutamol (GlaxoSmithKline, Belgium) (625 mg/ml) via continuous or targeted nebulization.

Subjects swallowed 100 ml of activated charcoal before and after nebulization (Carbomix, Norit, Netherlands). Urine samples were obtained before nebulization and 30 min after (Cu-30), and then from each spontaneous micturition and 240 min (Cu-240) after the start of nebulization. The volume of each micturition was measured.

Salbutamol levels in urine were measured in triplicate by HPLC.³ The amount of salbutamol excreted in urine (Cu) was calculated by multiplying the concentration by the volume of each sample. Pulmonary bioavailability was compared using the Cu-30 sample.

Mean anthropometric and spirometric values were as follows: height 177.6 ± 8.8 cm and weight 80.0 ± 19.6 kg, FVC 103.7% ± 16.8% of the predicted value and FEV1 100.3% ± 14.5% of the predicted value.

The inhaled dose was not significantly different (15.8% versus 16.5%, respectively, p=0.975) but the amount of drug delivered with the continuous nebulization method was twice that of the targeted method (p<0.001).

The excreted amounts of salbutamol are summarized in Table 1. Cu-30 was similar for both delivery systems (p=0.947). The accumulated amount of salbutamol excreted in urine was significantly higher with the targeted nebulization system (p<0.05).

Pulmonary bioavailability of nebulized salbutamol is a reproducible measurement for predicting drug deposition in the lung⁴ and for determining the amount of drug that is provided to the body via the pulmonary route and rapidly excreted in the urine. Concentrations may be overestimated in healthy individuals,⁵ but this does not affect the comparison of the delivery methods. Our results

References


The inhaled dose was not significantly different (15.8% versus 16.5%, respectively, p=0.975) but the amount of drug delivered with the continuous nebulization method was twice that of the targeted method (p<0.001).

The excreted amounts of salbutamol are summarized in Table 1. Cu-30 was similar for both delivery systems (p=0.947). The accumulated amount of salbutamol excreted in urine was significantly higher with the targeted nebulization system (p<0.05).

Pulmonary bioavailability of nebulized salbutamol is a reproducible measurement for predicting drug deposition in the lung⁴ and for determining the amount of drug that is provided to the body via the pulmonary route and rapidly excreted in the urine. Concentrations may be overestimated in healthy individuals,⁵ but this does not affect the comparison of the delivery methods. Our results

References


Fig. 1. Nebulization delivery modes during one inspiratory cycle.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Continuous</th>
<th>Discontinuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-30</td>
<td>36.69 ± 31.56</td>
<td>35.56 ± 28.39</td>
</tr>
<tr>
<td>Cu-60</td>
<td>30.59 ± 15.63</td>
<td>51.72 ± 37.24</td>
</tr>
<tr>
<td>Cu-240</td>
<td>51.08 ± 25.87</td>
<td>84.89 ± 36.47</td>
</tr>
<tr>
<td>Accumulative amount</td>
<td>118.36 ± 47.77</td>
<td>172.18 ± 46.82</td>
</tr>
</tbody>
</table>

Results expressed as mean ± standard deviation.

* p<0.05.

Efthimia Kalampouka, Argyri Petrocheilou, Athanasios G. Kaditis, Stavros-Eleftherios Doudounakis

a Cystic fibrosis Center, Agia Sophia Children’s Hospital, Atenas, Greece
b First Department of Pediatrics, University of Athens Medical School, Agia Sophia Children’s Hospital, Atenas, Greece

* Corresponding author. E-mail address: apetroch@gmail.com (A. Petrocheilou).
confirm that the AKITA® device delivers a greater amount of drug than other devices, with a pulmonary bioavailability approximately twice that previously described with 8 conventional nebulizers with different flows. However, drug-targeting nebulization did not affect pulmonary bioavailability compared to continuous administration. A significantly higher accumulated amount of excreted salbutamol was recovered from subjects using the targeted delivery device.

Further studies in radio-labelled aerosols will be needed to clarify the effect of targeted nebulization on drug deposition in the lungs. To conclude, drug-targeted nebulization does not change pulmonary bioavailability in healthy individuals but it does reduce the amount of drug delivered.

Clinical Trial: NCT01913184.

Authorship

a) Study concept and design or data collection, analysis or interpretation: Gregory Reychler, Anne-Sophie Aubriot, Julien Masquelier and G. Giulio Muccioli.
b) Preliminary draft of the article or critical review of significant intellectual content: Gregory Reychler, G. Giulio Muccioli and Giuseppe Liistro.
c) Final approval of version submitted for publication: Gregory Reychler, Anne-Sophie Aubriot, Julien Masquelier, G. Giulio Muccioli and Giuseppe Liistro.

Conflict of Interest

No conflict of interests.

References


Gregory Reychler,a,b,∗ Anne-Sophie Aubriot,a,d Julien Masquelier,e G. Giulio Muccioli,e Giuseppe Liistro,a,b

a Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Bruselas, Belgium
b Service de Pneumologie, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Bruselas, Belgium
c Department of Physical Medicine and Rehabilitation, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Bruselas, Belgium
d Department of Pediatry, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Bruselas, Belgium
e Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Bruselas, Belgium

∗Corresponding author.
E-mail address: Gregory.reychler@uclouvain.be (G. Reychler).