reported in the literature. A conservative approach is only an option in carefully selected patients, and even these patients must be very closely monitored (Fig. 1).

References

Maria del Sol Arenas-de Larriva, Javier Cosano-Povedano, Andrés Cosano-Povedano
Unidad de Broncoscopias, Servicio de Neumología, Hospital Universitario Reina Sofia, Córdoba, Spain
*Corresponding author.
E-mail address: arlam23@hotmail.com (M.S. Arenas-de Larriva).

A Comparison of the Impact Factor and the SCImago Journal Rank Index in Respiratory System Journals

Comparación del factor de impacto y el índice SCImago Journal Rank en las revistas del sistema respiratorio

To the Editor:

The systematic use of bibliometric indicators in the evaluation of research has given rise to the publication of in-depth studies on the advantages and disadvantages of each of these indicators. The most widely used indicator, the impact factor (IF), has been frequently criticized for its many limitations, such as inclusion of citations of articles that are not included in the denominator of the calculation formula (editorials, letters, etc.), an analysis period of only 2 years, the inclusion of self-citations and the lack of evaluation of the quality of the origin of the citation or the risk of manipulation, among others. 2-5

A recently proposed new parameter, the SCImago Journal Rank (SJR) index, has been readily accepted and adopted. It uses for its calculations citations from the Scopus database (Elsevier). 2 The SJR corrects many of the factors criticized in the IF, since it includes more journals, covers a longer period for including citations (3 years), and limits self-citations. More importantly, it weights citations according to the importance of the journal where they were published, using an algorithm similar to that of Google PageRank.

To compare the results of both indexes (IF and SJR) in specialized respiratory system journals, the values for 2012 were analyzed. The journals are listed under the category Respiratory System of the Journal Citation Reports® for the IF calculation and under the category Pulmonary and Respiratory Medicine of SCImago for the calculation of the new index. These indexes were obtained from the official websites of the Web of Science (at http://www.accesowok.fecyt.es/), which includes the Journal Citation Reports®, and the SCImago Journal & Country Rank (http://www.scimagojr.com/). The

Table 1
Respiratory System Journals With the Highest Score on the SCImago Journal Rank and the Corresponding Impact Factor Value.

<table>
<thead>
<tr>
<th>Order number</th>
<th>Title</th>
<th>SJR</th>
<th>Impact factor (order number according to the IF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>American Journal of Respiratory and Critical Care Medicine</td>
<td>4.892</td>
<td>11.041 (1)</td>
</tr>
<tr>
<td>2</td>
<td>Thorax</td>
<td>2.742</td>
<td>8.376 (2)</td>
</tr>
<tr>
<td>3</td>
<td>European Respiratory Journal</td>
<td>2.433</td>
<td>6.355 (3)</td>
</tr>
<tr>
<td>4</td>
<td>Journal of Heart and Lung Transplantation</td>
<td>2.221</td>
<td>5.112 (5)</td>
</tr>
<tr>
<td>5</td>
<td>Chest</td>
<td>2.021</td>
<td>5.854 (4)</td>
</tr>
<tr>
<td>6</td>
<td>American Journal of Respiratory Cell and Molecular Biology</td>
<td>1.907</td>
<td>4.148 (7)</td>
</tr>
<tr>
<td>7</td>
<td>Journal of Thoracic Oncology</td>
<td>1.766</td>
<td>4.473 (6)</td>
</tr>
<tr>
<td>8</td>
<td>Journal of Thoracic and Cardiovascular Surgery</td>
<td>1.730</td>
<td>3.526 (9)</td>
</tr>
<tr>
<td>9</td>
<td>American Journal of Physiology – Lung Cellular and Molecular Physiology</td>
<td>1.613</td>
<td>3.523 (10)</td>
</tr>
<tr>
<td>10</td>
<td>Proceedings of the American Thoracic Society</td>
<td>1.503</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Respiratory Research</td>
<td>1.502</td>
<td>3.642 (8)</td>
</tr>
<tr>
<td>12</td>
<td>International Journal of Tuberculosis and Lung Disease</td>
<td>1.340</td>
<td>2.610 (23)</td>
</tr>
<tr>
<td>13</td>
<td>European Journal of Cardiothoracic Surgery</td>
<td>1.326</td>
<td>2.674 (21)</td>
</tr>
<tr>
<td>14</td>
<td>COPD: Journal of Chronic Obstructive Pulmonary Disease</td>
<td>1.151</td>
<td>2.310 (28)</td>
</tr>
<tr>
<td>15</td>
<td>European Respiratory Review</td>
<td>1.068</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Current Opinion in Pulmonary Medicine</td>
<td>1.061</td>
<td>3.119 (13)</td>
</tr>
<tr>
<td>17</td>
<td>Respiratory Medicine</td>
<td>1.055</td>
<td>2.585 (24)</td>
</tr>
<tr>
<td>18</td>
<td>BMC Pulmonary Medicine</td>
<td>1.048</td>
<td>2.760 (19)</td>
</tr>
<tr>
<td>19</td>
<td>Clinical Lung Cancer</td>
<td>1.015</td>
<td>2.038 (*)</td>
</tr>
<tr>
<td>20</td>
<td>Sarcoidosis Vasculitis and Diffuse Lung Diseases</td>
<td>1.014</td>
<td>1.629 (37)</td>
</tr>
</tbody>
</table>

SJR, SCImago Journal Rank; IF, impact factor.
* Journals without impact factor.
† Journal with impact factor in another category.

* Please cite this article as: García-Pachón E, Arencibia-Jorge R. Comparación del factor de impacto y el índice SCImago Journal Rank en las revistas del sistema respiratorio. Arch Bronconeumol. 2014;50:308–309.
latter is available on free access. The classification order of
the journals for each index was reviewed and the possible cor-
relation between both indicators was evaluated using Spearman’s
test.

The Journal Citation Reports® includes 50 specialized respiratory
system journals and the SCImago Journal & Country Rank includes
98. In general, it was found that the top journals occupy similar
positions in both classifications, as seen in Table 1, which lists the
top 20 journals according to the SJR with their equivalent position
in the IF. There was a very high correlation between the indicators
for journals in this category (r=0.94; *p<.001).

Our data reveal that use of the SJR index does not significantly
change the classification of respiratory system journals compared
to the IF. Moreover, its calculation methods address the main
limitations attributed to IF, including nuances, such as citation
weighting, that may improve the characterization of the journals.
All these aspects, added to the fact that SCImago Journal & Country
Rank is free access, lead us to believe that SJR may be at present be
considered not only as a complement but also as an alternative to
the IF.

References
1. Garfield E. The history and meaning of the journal impact factor. JAMA.
of Scimago journal rank indicator with journal impact factor. FASEB J.
3. Bornmann L, Marx W, Gasparyan AY, Kitas GD. Diversity, value and limitations
4. The San Francisco Declaration on Research Assessment. Available from:
http://am.ascb.org/docs/ [accessed 11.09.13].
5. García-Pachón E, Padilla-Navas I. El factor de impacto y el índice h de las

Eduardo García-Pachón,a* Ricardo Arencibia-Jorgeb

a Sección de Neumología, Hospital General Universitario, Elche,
Alicante, Spain
b Centro Nacional de Investigaciones Científicas, La Habana, Cuba
*Corresponding author.
E-mail address: egpachon@gmail.com (E. García-Pachón).

Use of an Occlusion Balloon in Transbronchial
Lung Cryobiopsy

Utilización de un balón de oclusión en la realización de biopsias
pulmonares transbronquiales con criosonda

To the Editor:

With the aim of improving the diagnostic yield of transbronchial
lung biopsy, cryotherapy probes have begun to be used for obtaining
lung specimens. Studies evaluating the histological material
from endobronchial tumors obtained by cryobiopsy have found
that the specimens obtained are larger than those obtained with
conventional forceps, and that the quality for histology is better.1,2

From these data, the possibility of using cryoprobe as an alterna-
tive to the conventional method in the study of diffuse parenchymal
lung disease has been proposed, and the results suggest that
the technique improves diagnostic efficacy.3 Similarly, descriptive
studies aimed at analyzing the viability and the safety of the tech-
nique have been performed and have shown no increase in adverse
effects, even in lung transplantation patients.4

In this respect, the authors have analyzed the data from
77 patients with suspected diffuse interstitial disease randomized
to undergo transbronchial lung biopsy with cryoprobe (39 patients)
or conventional forceps (38 patients). A greater number of patients
in the cryobiopsy group presented moderate bleeding compared to
the conventional group (56.4% versus 34.2%, *p=0.068). However,

Fig. 1. (a) Endoscopic image of the occlusion balloon placed parallel to the cryoprobe in the entrance to the right lower lobe (RLL) segmental bronchus. (b) Endoscopic image
of the inflated occlusion balloon after performing the transbronchial lung biopsy.

Please cite this article as: Pajares Ruiz V, Torrego Fernández A, Puzo Ardunuy C,
Gil de Bernabé A. Utilización de un balón de oclusión en la realización de biopsias
pulmonares transbronquiales con criosonda. Arch Bronconeumol. 2014;50:
309–310.