Clinical Audit of Patients Admitted to Hospital in Spain due to Exacerbation of COPD (AUDIPOC Study): Method and Organisation

Francisco Pozo-Rodríguez a,b, *, Carlos José Álvarez a, Ady Castro-Acosta b, Carlos Melero Moreno a, Alberto Capelastegui c, Cristobal Esteban c, Carmen Hernández Carcereny d, José Luis López-Campos e, José Luis Izquierdo Alonso f, Antonio López Quílez g, Alvar Agustí d,b and Grupo AUDIPOC España *

aNeumología, Hospital 12 de Octubre, Madrid, Spain
bCentro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Spain
cNeumología, Hospital de Galdakao, Vizcaya, Spain
dUnidad Atención Integrada Hospital Clinic, Institut del Tòrax, Hospital Clinic, Barcelona, Spain
eUnidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Sevilla, Spain
fNeumología, Hospital Universitario de Guadalajara, Guadalajara, Spain
gDepartamento de Estadística e Investigación Operativa, Universidad de Valencia, Valencia, Spain

Article history:
Received April 15, 2010
Accepted April 15, 2010

Keywords:
COPD
COPD exacerbations
Clinical audit
Mortality
Readmissions

Abstract

Background: There is little information regarding the clinical management of hospital inpatients diagnosed with exacerbation of Chronic Obstructive Pulmonary Disease (COPD). AUDIPOC is a clinical audit dealing with the clinical management of COPD in Spain.

Objectives: To examine the adequacy and validity of the instruments used to measure the variables proposed in AUDIPOC Spain (Preliminary Study) and to verify the viability of AUDIPOC in a complex environment with hospitals of different sizes, resources, and organizational layout (Pilot Study).

Materials and methods: The Preliminary Study took place in 4 hospitals and studied 213 cases. The Pilot Study took place in 30 hospitals of 6 Autonomous Communities (i.e. Regions) and studied 1203 cases.

Results: The results of both studies contributed to the improvement of the design, methods and organisation of the AUDIPOC work. Some of the improvements include better training of those responsible at a hospital level, a new classification of hospitals, the incorporation of new variables and the creation of a Panel for the Coordination and Management of the Project.

Conclusions: The AUDIPOC study is viable. It aims to recruit 10 000 patients across 142 hospitals from all the Regions of Spain.

© 2010 SEPAR. Published by Elsevier España, S.L. All rights reserved.

Resumen

Antecedentes: Existe poca información sobre el manejo clínico de pacientes ingresados en hospitales públicos españoles con un diagnóstico de exacerbación de enfermedad pulmonar obstructiva crónica. AUDIPOC es una auditoría clínica sobre el manejo de exacerbación de EPOC en España.

Objetivos: Validar la adecuación y validez de los instrumentos de medición de las variables propuestas en AUDIPOC España (estudio preliminar) y verificar su viabilidad en un medio complejo con hospitales de tamaño, recursos y organización diferentes (estudio piloto).

© 2010 SEPAR. Published by Elsevier España, S.L. All rights reserved.
Introduction

COPD patients frequently have episodes of exacerbation of the disease (eCOPD), which are clinically relevant for being associated with a significant mortality rate. They accelerate the deterioration of pulmonary function, reduce the quality of life of the patient and cause most of the social, economical, and health costs of the disease. Numerous guides for clinical practice are designed to systematise the treatment of eCOPD, developing standards of quality. However, given the lack of information on the clinical management of these patients in Spain, the integrated research program (IRP) on COPD by SEPAR and CIBER on respiratory diseases (CIBERRD) decided to push for a national clinical audit (AUDIPOC study) in order to analyse the medical attention given to hospitalised patients diagnosed with eCOPD. The objectives of the AUDIPOC study are described in table 1.

With the objective of evaluating and eventually improving the methods and organisation of the treatment, a preliminary study was performed to determine the adequacy and validity of the measuring instruments for the various proposed variables. A pilot study was also performed to verify the viability of this complex audit, with hospitals of different sizes, resources, and organisation systems.

In this paper, we present the initial methodological design of the AUDIPOC study, the most relevant results and conclusions from the preliminary and pilot studies, as well as the implications of both studies in AUDIPOC organisation and design.

Method

AUDIPOC Study, Spain

Initial generic design

AUDIPOC Spain was designed as an observational transverse study with prospective case recruitment. It is based on hospital stay and outpatient follow-up for three months after admission. Clinical data will come from the patients’ medical records (medical history and related documents) and data regarding development and hospital materials will be obtained as the study takes place. The study will be performed at 142 public Spanish hospitals in each of the autonomous communities (ACs), which represents 65% of general public hospitals with emergency services offering coverage to approximately 80% of the Spanish population (fig. 1). The sample population will be made up of patients hospitalised in participating health centres during the study period and diagnosed with eCOPD by the attending physician upon admission.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Objectives of the AUDIPOC study</th>
</tr>
</thead>
<tbody>
<tr>
<td>General objective</td>
<td>Describe the type of medical attention being given in Spain to patients hospitalised with a clinical diagnosis of CPOD exacerbations.</td>
</tr>
</tbody>
</table>
| **Specific objectives** | 1. Describe the clinical state of the patients upon admission
2. Describe the type, quality, and adequacy of the clinical attention given (Clinical Model, CM)
3. Describe the resources and organisation model of each hospital (Hospital Management Models, HMM)
4. Describe the available outpatient social and health devices (Out-patient Management Model, OMM)
5. Describe disease outcomes: duration of hospitalisation, deaths, and re-admittances
6. Describe the variation in clinical interventions, organisation and hospital; resources between regions, type of hospital and participating hospitals
7. Describe the variation in outcomes between regions, hospital type and participating hospitals
8. Describe latent variables for spatial distribution (SV) by patient place of residence
9. Examine the impact of CM, HMM, OMM, and SV vectors on outcomes |
Organisation of the study

A Scientific Committee (SC) made up of pulmonologists, epidemiologists, and statisticians designed the study. The fieldwork will be directed by the SC, which will designate regional directors (RD) in the various participating ACs. A local manager (LM) will coordinate the study in the participating hospitals and supervise the collection of survey data.

Variables and measurement instruments

Data on 284 variables related to the participating hospitals and 471 variables on patient subjects will be collected (online repository). The variables will be grouped into 5 categories: 1) available resources and work organisation or hospital model (HM); 2) clinical practice models (PM), with data on the clinical process; 3) outcomes: duration of hospital stay, and mortality rate, frequency of flare-ups and readmissions during hospital stay and 90 days following discharge; 4) analysis of spatial data: location of the hospital and patient’s residence; and 5) audit evaluation: evaluating whether clinicians know the audit in progress and the quality of databases.

Analysis plan

The distribution for each variable will be described by national and regional levels, type of hospital and individual hospital and the position of each entity with respect to its category will be compared. The project will also evaluate the influence of the clinical condition of the patient, clinical practice models, hospital models and geographical variability on the outcomes via hierarchical Bayesian spatial models. Where applicable, the predictable spatial variability in the study will be taken into account in order to ascertain the determinants linked to geographical factors and isolate the effect of the variables under evaluation. To this end, random effects will be introduced with auto-regressive spatial structures. The analysis will be performed using Monte Carlo methods for Markov chains (MCMC) with Win BUGS computer programme.

Ethical aspects and conflict of interest

The AUDIPOC España project must be approved by ethics committees and the management of participating hospitals. The SC and LM will be responsible for the safety and confidentiality of the patient and participants’ data. The WEB-based database will be dissociated and encrypted.

Preliminary study

The preliminary study was performed between March 13 and April 12 of 2006 in several hospitals: 12 de Octubre (Madrid), Guadalajara General, Galdakao (Vizcaya), and Clinic (Barcelona), with an assigned population of 1,571,000 inhabitants. Two hundred twenty-one patients were recruited. The database was designed using Microsoft Access 2003.

Figure 2. Patient acquisition system.
Inclusion and exclusion criteria

Table 3

Inclusion and exclusion criteria

a. Definitive inclusion criteria (at least one)
1. Admitted principally for COPD diagnosis
2. Admitted for “respiratory pathology” [respiratory infection without radiological infiltration or pleural effusion (OR) respiratory failure (OR) right heart failure (OR) bronchitis (OR) bronchospasms (AND) [historical diagnosis of COPD (OR) a documented FEV1/FVC < 0.70 in the absence of other obstructive diseases such as asthma or bronchiectasis]

b. Definitive Exclusion Criteria (any of the following):
1. Specific diagnosis: pulmonary oedema, pneumonia, pulmonary embolism, pneumothorax, rib fractures, aspiration, pleural effusion, etc. upon admission
2. Other associated respiratory pathology that determines treatment: pulmonary fibrosis, kyphoscoliosis, obesity-hypventilation, neuromuscular pathology, upper airway obstruction, bronchiectasis, extensive tuberculosis sequelae, asthma, bronchiolitis or uncontrolled bronchogenic carcinoma
3. Pathology outside the lungs that determines treatment: major cardiopathy with chronic heart failure, evolved dementia, extended neoplasia, liver or kidney failure, or other situations at the discretion of the researcher

These criteria are evaluated on the discharge report and clinical history. The cases included are those that have at least one inclusion criteria and no exclusion criteria.

Pilot study

The pilot study was performed between February 5 and March 16 of 2007 in 30 hospitals from 6 ACs (Cantabria, Castilla La Mancha, Vasque Country, Extremadura, Navarra, and Rioja) with an assigned population of 6,597,734 inhabitants. In figure 2, the patient acquisition system is outlined, designed to systematise case definitions. Admission forms were reviewed upon hospital admission in order to identify the provisional inclusion criteria, indicators of acute or exacerbated pulmonary pathology (potentially eligible cases, table 2). Upon discharge, the patient’s chart or clinical history was reviewed to see if he/she had a definite or possible diagnosis for eCPOD, non-CPOD respiratory pathology, or pathology outside lungs, which are definitive inclusion and exclusion criteria for the study (table 3).

Our group created a WEB-based information system for online data registration, with the necessary precautionary measures to minimise editing errors. The service was provided under the Windows 2003 Server platform, DELL servers, in an n+1 infrastructure that integrates AT and Rapier Switches from Allied Telesyn, HP Switches, APC Masterswitch, Ethic load balancers and firewalls and MS SQL Server 2003 database motor. The SC and LM were responsible for the security and confidentiality of participating patient and hospital’s data. The database was dissociated and encrypted and the

Table 4

Some relevant characteristics for cases included in the preliminary and pilot studies

<table>
<thead>
<tr>
<th>Variable</th>
<th>Preliminary Study (n: 213)</th>
<th>Pilot Study (n: 1203)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>74.0</td>
<td>73.7</td>
</tr>
<tr>
<td>Males (%)</td>
<td>88.0</td>
<td>89.3</td>
</tr>
<tr>
<td>Active smokers (%)</td>
<td>20.6</td>
<td>19.1</td>
</tr>
<tr>
<td>Ex-smokers</td>
<td>66.0</td>
<td>60.6</td>
</tr>
<tr>
<td>Non smokers</td>
<td>6.2</td>
<td>5.7</td>
</tr>
<tr>
<td>Unregistered tobacco history</td>
<td>7.2</td>
<td>14.6</td>
</tr>
<tr>
<td>Previously documented spirometry</td>
<td>53.0</td>
<td>60.7</td>
</tr>
<tr>
<td>FEV1 (ml) and % over predicted (means)</td>
<td>1,225 (46)</td>
<td>1,167 (52)</td>
</tr>
<tr>
<td>FEVI/FVC means</td>
<td>50.0</td>
<td>52.0</td>
</tr>
<tr>
<td>Relevant co-morbidity as deemed by the researcher</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Charlson Index (mean)</td>
<td>53.0</td>
<td>55.5</td>
</tr>
<tr>
<td>Admitted by Pulmonology</td>
<td>37.0</td>
<td>38.6</td>
</tr>
<tr>
<td>Admitted by Internal Medicine</td>
<td>98.1</td>
<td>97.6</td>
</tr>
<tr>
<td>Blood gases upon admission</td>
<td>94.8</td>
<td>93.2</td>
</tr>
<tr>
<td>Mean PaO2 (mHg)</td>
<td>58.3</td>
<td>55.6</td>
</tr>
<tr>
<td>Mean PaCO2 (mHg)</td>
<td>45.4</td>
<td>46.7</td>
</tr>
<tr>
<td>Acidosis (pH ≤ 7.35) upon admission</td>
<td>16.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Frequency of treatment with MV (NIMV)</td>
<td>12.7 (8.15)</td>
<td>10.2 (89)</td>
</tr>
<tr>
<td>NIMV at the hospital</td>
<td>63.3</td>
<td>60.5</td>
</tr>
<tr>
<td>Mean duration of stay (days)</td>
<td>9.0</td>
<td>9.8</td>
</tr>
<tr>
<td>Hospital mortality</td>
<td>4.3</td>
<td>4.7</td>
</tr>
<tr>
<td>Mortality following discharge (90 days from admission)</td>
<td>–</td>
<td>5.1</td>
</tr>
<tr>
<td>Re-admissions (until 90 days)</td>
<td>–</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Values expressed as percentages unless otherwise specified.

MV: Mechanical Ventilation; NIMV: Non-Invasive Mechanical Ventilation.

Preliminary study

There was substantial variation in the rates of recruitment between the four centres with respect to the assigned population (between 1.1 and 1.6/100,000). Table 4 presents some relevant data from the preliminary and pilot studies. The data obtained in the preliminary study allowed for the conclusions that: (i) the definition of case was ambiguous and allowed for interpretations that produced greater variability in recruitment of patients; (ii) the majority of the variables were relevant to the objectives of the AUDIPOC and could be answered; (iii) the study lacked variables related to socioeconomic level, patient’s lifestyle or social support and the follow-ups on clinical and vital states of each case; and (iv) there were mistakes in collecting information for some variables because they were too open to interpretation or lacking in guidelines, response limits and automatic internal checks in the database. Therefore, the definition of case was sharpened and a new WEB-based information system was designed. Both changes were implemented in the pilot study.

Pilot study

One thousand eight hundred and ninety-one potentially eligible cases were recruited. Ninety-five were rejected on the basis of improper case handling, and 593 for exclusion criteria (295 for non-CPOD chronic respiratory pathology, 195 or non-eCPOD acute respiratory pathology, and 103 for pathology outside lungs). Finally 1203 patients were included in the study. This constituted the first admission for eCPOD in 27% of cases. One hundred and fourteen patients (9.5%) died, 57 during admission (4.7%) and 57 following discharge within the 90-day follow-up period. During this follow-
with 424 patients (37.2%) were readmitted, 75% of them due to eCPOD. Of the 30 participating hospitals, 2 had active CPOD rehabilitation programs, 2 offered home care, and 2 had intermediate pulmonary care. 90% offered non-invasive mechanical ventilation and 2/3 of the emergency services did not have a medical protocol for normalised eCPOD care. Table 4 summarises some of the relevant data from the pilot study, along with information from the preliminary study. The results from this pilot study allowed for the following conclusions: (i) the WEB-based information system worked and allowed for real-time monitoring of the study; (ii) the patient acquisition system and the exclusion/inclusion criteria helped to standardise the recruitment process; (iii) a significant difference remained present in the provisional recruitment and definitive inclusion rates among hospitals and ACs; (iv) the definition of hospitals as primary, secondary, and tertiary did not appropriately classify the health centres in terms of resources, organisation, and health care offer; (v) a notable level of variability was observed in interventions and outcomes between hospitals and ACs (table 5); and (vi) the AUDIPOC España study was feasible.

Implications for the design of the AUDIPOC study

Based on the initial design and the results from the preliminary and pilot studies, the SC decided to: (i) maintain the provisional and definitive exclusion and inclusion criteria; (ii) reinforce the training of hospital representatives and survey assistants in order to homogenise recruitment and inclusion in the study; (iii) implement a better definition of hospital types (table 6); (iv) add variables that help to explain the variability in interventions and outcomes; (v) create a panel for the coordination and management of the project, and (vi) design a consistency study in order to document the reproducibility of data collection, which will be performed using 29 relevant variables (online repository) in 15% of the provisionally included patients, selected through a randomised sampling design stratified by centre.

Discussion

eCPOD episodes have a major clinical relevance. However, little information is available on the clinical management of hospitalised patients diagnosed with eCPOD in Spain. In 1997, the British Thoracic Society and the Royal College of Physicians of London propelled the first audit on the subject, involving 38 hospitals and 1,400 patients. The results suggested that the procedures and styles of clinical practice were not in line with recommendations and that there were big differences between hospitals. A second study was performed in 2003, this time at a national level, with 234 hospitals and 7,529 patients. The results from this second study confirmed the finding from the first study.

The British and Spanish studies shared the same objective: to understand the type and quality of assistance that patients admitted with the diagnosis of eCPOD in everyday medical practice, but they differ in various methodological aspects that deserve further exploration. Firstly, the existence of a positive diagnosis for eCPOD in an audit without further restrictions was the inclusion criteria for the British audit, which could have implicated the inclusion of patients without CPOD in such a large proportion that it could contaminate the results of the audit. In addition to the evidence published on infra and over-diagnosis of CPOD, some results from the British study, such as the elevated representation of women (49%) or the proportion of cases without spirometry (45%) suggest that the diagnosis of eCPOD upon admission lacked sufficient precision. Therefore, the SC of the Spanish study decided to use an entrance filter in the pilot study composed of criteria for inclusion/exclusion, without incorporating spirometry. This way, the study subjects were an adequate representation of the normal clinical practice, combining cases of sure diagnosis (with spirometry) with presumed

| Table 5 |
| Variability between hospitals and AC for several variables and outcomes |
Variable	Range among hospitals (n = 30)	Range among AC (n = 6)
Co-morbidity deemed relevant by the researcher	16.7-82.4	38.2-50.9
Documented spirometry frequency	25.6-94.2	41.7-81.7
% FEV1 over the reference value (mean)	30.4-56.7	43.6-51.9
Frequency of documented acidosis (pH ≤ 7.35)	0-40.9	4.9-23.9
Frequency of treatment with mechanical ventilation	0-27.8	3.7-13.6
Admitted by pulmonology	0-100	21.9-78
Mean duration of stay (days)	4-13	7-10
Hospital mortality	0-20	2.5-7.9
Total 90-day mortality	0-26.7	5.7-13.9
90 day re-admissions	15-80	20.9-45.2

Values expressed as percentages unless otherwise specified.

| Table 6 |
| Hospital types. Classification of public Spanish hospitals performed by the Department of Quantitative Methods in Economy and Management at the University of Las Palmas, (2007) as requested by the Ministry of Health and Social Policy |
Hospital types	
Group 1	Small county hospitals with less than 150 beds (mean), little high-tech equipment, few doctors, and low level of complexity
Group 2	Basic general hospitals, smaller than 200 beds (mean), minimal technological endowment, adequate share of doctors, and a greater complexity
Group 3	Area hospitals, mid-sized with around 500 beds. Over 50 internal medicine residents and 269 doctors (mean). Mid-level complexity (1.5 departments and 1.01 case mix)
Group 4	Large hospitals with greater heterogeneity in size and activity. High-intensity faculty (over 160 internal medicine residents) and elevated complexity (mean of 4 complex departments and case mix above 1.2)
Group 5	Very large and highly active hospitals. Offers complete services in all departments. Over 680 doctors and around 300 internal medicine residents. Includes large complexes
diagnoses (without spirometry). Indeed, in the pilot study, spirometry was documented in only 68% of cases. Other data from the pilot study showed the efficiency of the filter in excluding cases that were unlikely to be CPOD and retain cases that were likely to be CPOD: 75% of cases included compared to 23% of cases excluded had been diagnosed with markers specifically for CPOD (table 7). The excluded cases (fig. 3) tended to be older, with a greater proportion of women (46%) that was far superior to the group of included cases (11%) and the described rates for the Spanish CPOD population. These data aided the SC in making the decision to maintain the entrance filter in the AUDIPOC study.

Secondly, the British audit15,16 assigned a fixed number of cases to each participating hospital, whereas the AUDIPOC recruited each emergent case during the study period. This allowed for the aggregated estimators at the national, regional, and hospital levels, to be pondered for the weight of health care at each hospital.

Also, in relation to the variability in interventions and outcomes between hospitals and regions that was reported both by the British studies and the pilot study, the SC decided that in the AUDIPOC, in addition to adjusting for the clinical condition of each patient and the structure and organisation of the hospital, they would use spatial analysis techniques to determine the impact of determinants linked to geographical factors.

Finally, AUDIPOC will incorporate diverse mechanisms for quality control of the data collected. In order to control for a potential information bias, data will also be collected on the involvement and knowledge of the responsible doctor for each patient in relation to the audit process. Furthermore, the management panel for the project will perform a daily supervision of the progress of the study and the quality of the data collected by performing an exhaustive review of a randomly selected group of cases and periodical intermediate analysis to identify impossible values and other inconsistencies.

The types of health practice identified in the AUDIPOC study will be assessed with external and internal standards. The first to be used will be the GOLD1 and SEPAR8,22 standards, as well as quality controls proposed by the CPOD strategy of the National Health System; the comparison will be performed on national, regional, hospital type, and individual hospital levels. The next analysis will be performed on the central tendency data from each level of the AUDIPOC. The results from these comparisons will be used to make recommendations for clinicians and health management in order to improve the medical attention for patients hospitalised with CPOD in Spain. The evaluation of the grade and quality of compliance with these recommendations will be verified with another clinical audit project on CPOD exacerbations at European level. This involves a pilot study sponsored by the European Respiratory Society (ERS), coordinated by British and Spanish researchers, with 13 countries participating in the field work through their respective national health societies.

Funding

The multicentre AUDIPOC pilot study was approved and financed by the ETES Health Research Fund (FIS 06/90397, 06/90433, 06/90435, 06/90436, 06/90519 y 06/90563).

Acknowledgements

The authors thank the Agencia de Calidad del Sistema Nacional de Salud (Ministerio de Sanidad y Política Social) (Ministry of Health and Social Policy), CIBER de Enfermedades Respiratorias (CIBERES) (CIBER for Respiratory Disease), the SEPAR Integrated Research Program IRP for CPOD, the health officials and Hospital Departments and Management for their help with the preliminary and pilot studies, and Quodem Consultores S.L. for their dedication to this project.

Attachment 1. Grupo AUDIPOC España

Coordinator: POZO RODRIGUEZ, Francisco. Neumología, Hospital 12 de Octubre. Madrid. **Coordination panel:** CASTRO ACOSTA, Ady Angéllica. Médico Investigador CIBERES Unidad de Epidemiología Clínica, Hospital Universitario 12 de octubre. Madrid. BOUKICHOU ABDELKADER, Nisa Lic. CC y TT. Estadísticas. Investigador CIBERES Unidad de Epidemiología Clínica, Hospital Universitario 12 de octubre. Madrid. JIMENEZ ARANDA, Guillermo Estadístico Investigador CIBERES Unidad de Epidemiología Clínica, Hospital...

Attachment 2. Supporting information

Supplementary data associated with this article can be found in the online version on the web at doi:10.1016/j.arbres.2010.04.004.

References

