EDITORIAL

Diagnostic Imaging Techniques for Pulmonary Embolism

Dolores Nauffal Manzur
Servicio de Neumología, Hospital La Fe, Valencia, Spain.

Imaging techniques, both invasive and noninvasive, are the primary tools used to diagnose pulmonary thromboembolism. Noninvasive techniques include ventilation–perfusion lung scintigraphy, spiral computed tomography (CT), CT angiography, pulmonary magnetic resonance angiography (MRA), and transthoracic echocardiography, which is useful in certain circumstances even though it only provides indirect signs of embolism. In 90% of cases, pulmonary embolism is caused by deep vein thrombosis (DVT) of the lower extremities; as a result, lower limb Doppler ultrasound—the most commonly used noninvasive method to detect DVT—is usually included in the diagnostic algorithm. Conventional pulmonary angiography, intravenous CT venography of the lower limbs, and currently digital intravenous angiographic subtraction (DIVAS) are considered the standard diagnostic tests for pulmonary embolism. We will briefly assess the current situation and the future prospects for each of these techniques and a few other new methods.

Ventilation-perfusion scintigraphy has been an excellent technique for diagnosing pulmonary embolism, especially since the PIOPED study,1 which established the probability criteria for the diagnosis based on the combined results of radiology and lung scans. Because ventilation-perfusion scintigraphy has high negative predictive value, it is the first imaging technique in the diagnostic algorithm.2 The technique has drawbacks, however, as evidenced by the finding from the PIOPED study that 30% of patients considered to have low or moderate probability of pulmonary embolism as determined by a lung scan were subsequently found to have an embolism on angiography. That study also found that among patients with angiographically confirmed embolism, only 41% were cases initially considered high probability based on ventilation-perfusion scans and 70% were considered to have moderate probability of pulmonary embolism.1 In addition, in cases with low or moderate probability, interobserver variability was estimated to be approximately 30%.3

Another difficulty is that ventilation-perfusion scans are difficult to interpret in patients who have chronic obstructive pulmonary disease and suspected pulmonary embolism and in cases of recurrence (because, in a high percentage of cases, the perfusion abnormalities observed do not disappear completely).4 The disadvantages of ventilation-perfusion scintigraphy, coupled with fact that such invasive tests are unavailable at most hospitals, have led to a search for alternative noninvasive methods to establish a definitive diagnosis of pulmonary embolism.

There has been a dramatic increase in the use of CT angiography in this clinical setting ever since the first report by Remy-Jardin5 in 1992. Numerous studies have evaluated the sensitivity, specificity, and positive and negative predictive values of both single-detector and multidetector CT angiography—the second of which has a higher specificity in detecting subsegmental emboli.6 In fact, one of these studies7—a multicenter, prospective study—found that the negative predictive value of single-detector CT angiography was high enough to allow that test to be used first to exclude pulmonary embolism. However, in a more recent study, this same group of researchers reported that the sensitivity offered by this type of CT angiography was not, in fact, acceptable for patients with a moderate or high clinical probability of pulmonary embolism.8 This finding was recently confirmed by Jiménez et al9 in their excellent study in the present issue of ARCHIVOS DE BRONCONEUMOLOGÍA. That retrospective study of 165 patients who underwent single-detector CT angiography for suspected pulmonary embolism found that this modality had a sensitivity of only 63% and, moreover, 35% of patients with a negative result later developed pulmonary embolism. However, these findings should be considered in the context of the study’s limitations: relatively few patients, radiologists without specific expertise in pulmonary circulation, and no measurement of interobserver variability. The most important conclusion from the study is that a negative single-detector CT angiogram is not sufficient, by itself, to rule out pulmonary embolism in patients with moderate or high clinical probability. However, as has
been observed in other series, this technique is
satisfactory in low probability cases. Another interesting conclusion
from the study by Jiménez and coworkers is that a negative CT
angiography represents a significant advance in diagnosis because it
has a higher negative and positive predictive value compared to single-detector CT angiography, as shown in 2 recent meta-analyses and 1 study of cost-
effectiveness. Compared to single-detector CT angiography, the multidetector modality is more effective in terms of excluding or confirming the presence of pulmonary embolism. These findings are consistent with those from the most recent study by van Strijen et al., in which more than 500 patients were
enrolled prospectively; those authors found that a diagnosis of pulmonary embolism could be ruled out in 80% of patients if CT angiography was negative. Multidetector CT angiography has additional advantages, including the ability to perform the DVT study during the same exploration, to differentiate thrombotic from fat emboli, and to distinguish between older and more recent thrombi.13,14

Gadolinium-enhanced MRA is an excellent noninvasive diagnostic technique for pulmonary embolism because its sensitivity and specificity are high, as confirmed by a review article and a meta-
analysis, and it also allows simultaneous study of pulmonary embolism and DVT. These techniques are and have been developed pulmonary embolism has a moderate or high clinical probability, moreover, single-detector, rather than multidetector, CT angiography was used. Ventilation-perfusion scans would be indicated in patients with a low clinical probability of pulmonary embolism and a positive D-dimer assay, as well as to screen DVT patients for asymptomatic pulmonary embolism, which occurs in approximately 50% of cases.21 Scintigraphy would also be indicated for patients who are allergic to iodine contrast medium. DIVAS would be indicated in cases with moderate to high clinical probability of pulmonary embolism and negative results on all noninvasive tests. In patients with DVT alone; CT angiography would only be necessary if the patient shows signs or symptoms of pulmonary embolism on follow-up.

Conventional angiography, DIVAS, and CT venography are considered the gold standard tests for establishing a definitive diagnosis in both pulmonary embolism and DVT. These techniques are and have long been part of the traditional algorithm for pulmonary embolism, but they are invasive procedures with potential complications and are simply not available in many hospitals. Moreover, the emergence of multidetector CT angiography and considering that pulmonary embolism can be diagnosed by noninvasive methods, such as Doppler ultrasound and CT angiography, requires the same amount of time and money to perform as the combination of ventilation-perfusion scintigraphy and lower limbs.8-11

Currently, the main debate is whether multidetector CT angiography can replace both ventilation-perfusion scintigraphy and invasive methods. In my opinion, given the data presented here and considering that CT angiography can replace both ventilation-perfusion scintigraphy and invasive methods, this does not contradict the results of Jiménez and colleagues21 because their patients who developed pulmonary embolism had a moderate or high clinical probability, moreover, single-detector, rather than multidetector, CT angiography was used. Ventilation-perfusion scans would be indicated in patients with a low clinical probability of pulmonary embolism and a positive D-dimer assay, as well as to screen DVT patients for asymptomatic pulmonary embolism, which occurs in approximately 50% of cases.21 Scintigraphy would also be indicated for patients who are allergic to iodine contrast medium. DIVAS would be indicated in cases with moderate to high clinical probability of pulmonary embolism and negative results on all noninvasive tests. In patients with DVT alone; CT angiography would only be necessary if the patient shows signs or symptoms of pulmonary embolism on follow-up.

Some new imaging techniques have a sensitivity and specificity similar to that of CT angiography. An example is single photon emission CT using anti-D-dimer, for which results have already been reported.22 Others that may play roles in both pulmonary embolism and DVT. These techniques are and have long been part of the traditional algorithm for pulmonary embolism, but they are invasive procedures

Arch Bronconeumol. 2006;42(7):314-6 315
REFERENCES


