Cases of Pulmonary Mycobacterium szulgai Infection Leading to Pneumothorax and Spontaneous Remission

Casos de infección pulmonar por Mycobacterium szulgai que lleva a neumotórax con remisión espontánea

Dear Editor,

Nontuberculous mycobacteria (NTM) are environmental organisms residing in soil and water. A greater number of isolates of NTM species has led to a higher prevalence of pulmonary infections caused by NTM.\(^1\) Over 150 different species of NTM have been described. NTM-induced pulmonary infections are usually caused by *Mycobacterium avium-intracellulare*, *M. kansasii*, and *M. abscessus*.\(^1\) NTM are traditionally divided into slowly-growing and rapidly-growing organisms.\(^2\) *M. szulgai* is a slow-growing organism that was first reported by Marks et al. in 1972.\(^3\) It is isolated from environmental sources, including snails, aquarium water, swimming pool water, and tropical fish. However, this organism is rarely isolated from humans, and accounts for just <0.5% of all human isolates of NTM.\(^4\) Pulmonary infection is the most common manifestation of *M. szulgai*, and clinically and radiologically it resembles the manifestation of *M. tuberculosis* and *M. kansasii*.\(^5\) Here we describe two cases of pulmonary *M. szulgai* infection: 1 with pneumothorax and the other with spontaneous remission.

A 86-year-old man (Case 1), an ex-smoker, presented with dyspnea and fever. He had no history of pulmonary tuberculosis. He did not respond to oral levofloxacin, and was referred to Hikone Municipal Hospital for further investigation. His white blood cell count was 16,290/\(\mu\)L and C-reactive protein level was 16.22 mg/dL. Chest X-ray and computed tomography (CT) showed pulmonary infiltration with an air bronchogram and bronchiectasis in the right upper lobe and right pneumothorax with pleural effusion (Fig. 1A, D, E). Pleural fluid analysis revealed a neutrophil-predominant (64%) exudate, with 117 mg/dL glucose, 770 I/U/L lactate dehydrogenase, and 57.2 U/L adenosine deaminase. Initial blood and pleural fluid cultures were negative for bacterial and mycobacterial organisms. Initial sputum culture was negative for bacterial organisms but positive for *M. szulgai*, which was identified using a DNA-DNA hybridization method. Empirical antibiotic treatment with 1 g cefozopran twice daily was started and thoracic drainage was performed. Because of persistent fever, antibiotic treatment was changed to 150 mg ciprofloxacin twice daily at 2 weeks post-admission. The second sputum culture was negative for bacterial organisms but positive for *M. szulgai*. Furthermore, the second pleural fluid culture was positive for mycobacterial organisms; however, no particular species could be identified. Ciprofloxacin was continued for 1 week, and chest X-ray showed improvement in pleural effusion 1 month post-admission (Fig. 1B). The patient was discharged 47 days after admission. Two months later, repeat chest X-ray showed further improvement in pleural effusion; however, infiltration and bronchiectasis persisted (Fig. 1C).

A 44-year-old man (Case 2), a current-smoker, presented with an abnormal chest X-ray at a routine medical check-up. He had no history of pulmonary tuberculosis. Chest X-ray showed apical infiltration of the right lung (Fig. 1F) with significant accumulation on subsequent \(^{18}\)F-fluorodeoxyglucose positron emission tomography/CT. Initial fiber-optic bronchoscopy did not detect any organisms, including bacteria and acid-fast bacilli, or malignant tumors. Despite treatment with 500 mg of amoxicillin and 125 mg of clavulanic acid 3 times daily for 2 weeks, increased apical infiltration of the right lung was observed on chest X-ray (Fig. 1G) and the patient complained of chest discomfort. Chest CT revealed pulmonary infiltration with suspicious cavitation and bullae in the right upper lobe (Fig. 1I, J). Repeat fiber-optic bronchoscopy 2 months after the initial examination revealed the presence of

---

Fig. 1. Chest X-ray images on admission (A), 1 month after admission (B), and 2 months (C) after discharge and chest computed tomography images (D, E) in Case 1. Chest X-ray images at routine medical check-up (F) and 4 (G) and 8 (H) months after routine medical check-up and chest computed tomography images (I, J) in Case 2.
M. szulgai, which was identified using a DNA–DNA hybridization method. The chest X-ray showed improvement in right lung abnormality 4 months after the second fiber-optic bronchoscopy without antimicrobial treatment. This report should highlight the need for a patient-centered management framework in pulmonary M. szulgai infection.

References


Satoshi Hamada a,⁎, Eiichi Hayashi b, Mitsuhiro Tsukino b

a Department of Respiratory Medicine, Hikone Municipal Hospital, Hikone, Japan
b Department of Thoracic Surgery, Hikone Municipal Hospital, Hikone, Japan

⁎ Corresponding author.

E-mail address: sh1124@kuhp.kyoto-u.ac.jp (S. Hamada).

http://dx.doi.org/10.1016/j.arbs.2017.01.010
0300-2896/© 2017 SEPAR. Published by Elsevier España, S.L.U. All rights reserved.