Journal Information
Vol. 48. Issue S2.
Actualización en fibrosis pulmonar idiopática
Pages 2-6 (October 2012)
Share
Share
Download PDF
More article options
Vol. 48. Issue S2.
Actualización en fibrosis pulmonar idiopática
Pages 2-6 (October 2012)
Actualización en fibrosis pulmonar idiopática
Full text access
La célula epitelial como factor etiopatogénico de la fibrosis pulmonar
Alveolar epithelial cell injury as an etiopathogenic factor in pulmonary fibrosisa
Visits
12307
Anna Serrano-Mollar
Departamento de Patología Experimental, Institut d’Investigacions Biomèdiques de Barcelona, España
Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, España
Centro de investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES)
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Resumen

La fibrosis pulmonar idiopática se caracteriza por una acumulación progresiva de matriz extracelular y un desequilibrio entre mediadores profibróticos y antifibróticos. Durante los últimos años se ha avanzado mucho en el conocimiento de los mecanismos de la biología de la fibrosis pulmonar idiopática. En este sentido, uno de los hallazgos más significativo es el descubrimiento de que la lesión de las células del epitelio alveolar juega un papel importante en la patogénesis de esta enfermedad. En la presente revisión se describen algunos de los mecanismos por los cuales las lesiones en las células alveolares pueden contribuir al desarrollo de la fibrosis pulmonar idiopática.

Palabras clave:
Fibrosis
Células alveolares
Apoptosis
Regeneración alveolar
Abstract

Idiopathic pulmonary fibrosis (IPF) is characterized by a progressive accumulation of extracellular matrix and an imbalance between profibrotic and antifibrotic mediators. In the last few years, understanding of the mechanisms of the biology of IPF has increased. One of the most significant discoveries is the finding that alveolar epithelial cell injury plays an important role in the pathogenesis of this disease. In this review, we describe some of the mechanisms involved in alveolar cell injury and their contribution to the development of IPF.

Keywords:
Fibrosis
Alveolar cells
Apoptosis
Alveolar regeneration
Full text is only aviable in PDF
Bibliografía
[1.]
G. Raghu, H.R. Collard, J.J. Egan, F.J. Martínez, J. Behr, K.K. Brown, et al.
An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.
Am J Respir Crit Care Med, 183 (2011), pp. 788-824
[2.]
B. Corrin, A. Dewar, R. Rodríguez-Roisín, M. Turner-Warwick.
Fine structural changes in cryptogenic fibrosing alveolitis and asbestosis.
J Pathol, 147 (1985), pp. 107-119
[3.]
J.L. Myers, A.L. Katzenstein.
Epithelial necrosis and alveolar collapse in the pathogenesis of usual interstitial pneumonia.
Chest, 94 (1988), pp. 1309-1311
[4.]
T.H. Sisson, M. Méndez, K. Choi, N. Subbotina, A. Courey, A. Cunningham, et al.
Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis.
Am J Respir Crit Care Med, 181 (2010), pp. 254-263
[5.]
M. Korfei, C. Ruppert, P. Mahavadi, I. Henneke, P. Markart, M. Koch, et al.
Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med, 178 (2008), pp. 838-846
[6.]
J.D. Crapo, B.E. Barry, P. Gehr, M. Bachofen, E.R. Weibel.
Cell numbers and cell characteristics of the normal human lung.
Am Rev Respir Dis, 126 (1982), pp. 332-337
[7.]
Y. Sibille, H.Y. Reynols.
Macrophages and polymorphonuclear neutrophils in lung defense and injury.
Am Rev Respir Dis, 141 (1990), pp. 471-501
[8.]
J. Pérez-Gil.
Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions.
Biochim Biophys Acta, 1778 (2008), pp. 1676-1695
[9.]
Z.C. Chroneos, Z. Sever-Chroneos, V.L. Shepherd.
Pulmonary surfactant: an immunological perspective.
Cell Physiol Biochem, 25 (2010), pp. 13-26
[10.]
D.F. Zoz, W.E. Lawson, T.S. Blackwell.
Idiopathic pulmonary fibrosis: a disorder of epithelial cell dysfunction.
Am J Med Sci, 341 (2011), pp. 435-438
[11.]
T.H. Sisson, M. Méndez, K. Choi, N. Subbotina, A. Courey, A. Cunningham, et al.
Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis.
Am J Respir Crit Care Med, 181 (2010), pp. 254-263
[12.]
M. Korfei, C. Ruppert, P. Mahavadi, I. Henneke, P. Markart, M. Koch, et al.
Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med, 178 (2008), pp. 838-846
[13.]
J.V. Barbas-Filho, M.A. Ferreira, A. Sesso, R.A. Kairalla, C.R. Carvalho, V.L. Capelozzi.
Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP).
J Clin Pathol, 54 (2001), pp. 132-138
[14.]
B.D. Uhal, I. Joshi, W.F. Hughes, C. Ramos, A. Pardo, M. Selman.
Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung.
Am J Physiol Lung Cell Mol Physiol, 275 (1998), pp. L1192-L1199
[15.]
F. Drakopanagiotakis, A. Xifteri, V. Polychronopoulos, D. Bouros.
Apoptosis in lung injury and fibrosis.
Eur Respir J, 32 (2008), pp. 1631-1638
[16.]
S.M. Frisch, R.A. Screaton.
Anoikis mechanisms.
Curr Opin Cell Biol, 13 (2001), pp. 555-562
[17.]
A.J. Valentijn, N. Zouq, A.P. Gilmore.
Anoikis. Biochem Soc Trans, 32 (2004), pp. 421-425
[18.]
T.M. Maher, A.U. Wells, G.J. Laurent.
Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms?.
Eur Respir J, 30 (2007), pp. 835-839
[19.]
W. Dröge.
Free radicals in the physiological control of cell function.
Physiol Rev, 82 (2002), pp. 47-95
[20.]
X. Wang, J.L. Martindale, Y. Liu, N.J. Holbrook.
The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival.
Biochem J, 333 (1998), pp. 291-300
[21.]
M. Waghray, Z. Cui, J.C. Horowitz, I.M. Subramanian, F.J. Martínez, G.B. Toews, et al.
Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts.
FASEB J, 19 (2005), pp. 854-856
[22.]
N. Hagimoto, K. Kuwano, I. Inoshima, M. Yoshimi, N. Nakamura, M. Fujita, et al.
TGF-b1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells.
J Immunol, 168 (2002), pp. 6470-6478
[23.]
S.J. Chen, W. Yuan, Y. Mori, A. Levenson, M. Trojanowska, J. Varga.
Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3.
J Invest Dermatol, 112 (1999), pp. 49-57
[24.]
A. Desmoulière, A. Geinoz, F. Gabbiani, G. Gabbiani.
Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts.
J Cell Biol, 122 (1993), pp. 103-111
[25.]
V.J. Thannickal, J.C. Horowitz.
Evolving concepts of apoptosis in idiopathic pulmonary fibrosis.
Proc Am Thorac Soc, 3 (2006), pp. 350-356
[26.]
Y.P. Moodley, P. Caterina, A.K. Scaffidi, N.L. Misso, J.M. Papadimitriou, R.J. McAnulty, et al.
Comparison of the morphological and biochemical changes in normal human lung fibroblasts and fibroblasts derived from lungs of patients with idiopathic pulmonary fibrosis during FasL-induced apoptosis.
J Pathol, 202 (2004), pp. 486-495
[27.]
C. Ramos, M. Montano, J. García-Álvarez, V. Ruiz, B.D. Uhal, M. Selman, et al.
Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression.
Am J Respir Cell Mol Biol, 24 (2001), pp. 591-598
[28.]
M. Korfei, C. Ruppert, P. Mahavadi, I. Henneke, P. Markart, M. Koch, et al.
Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med, 178 (2008), pp. 838-846
[29.]
W.E. Lawson, P.F. Crossno, V.V. Polosukhin, J. Roldan, D.S. Cheng, K.B. Lane, et al.
Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection.
Am J Physiol Lung Cell Mol Physiol, 294 (2008), pp. L1119-L1126
[30.]
Y. Ma, L.M. Hendershot.
The role of the unfolded protein response in tumour development: friend or foe?.
Nat Rev Cancer, 4 (2004), pp. 966-977
[31.]
M. Schroder, R.J. Kaufman.
The mammalian unfolded protein response.
Annu Rev Biochem, 74 (2005), pp. 739-789
[32.]
J. Shang.
Quantitative measurement of events in the mammalian unfolded protein response.
Methods, 35 (2005), pp. 390-394
[33.]
L.M. Nogee, A.E. Dunbar 3rd, S.E. Wert, F. Askin, A. Hamvas, J.A. Whitsett.
A mutation in the surfactant protein C gene associated with familial interstitial lung disease.
N Engl J Med, 344 (2001), pp. 573-579
[34.]
K.K. Kim, M.C. Kugler, P.J. Wolters, L. Robillard, M.G. Gálvez, A.N. Brumwell, et al.
Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix.
Proc Natl Acad Sci USA, 103 (2006), pp. 13180-13185
[35.]
B.C. Willis, J.M. Liebler, K. Luby-Phelps, A.G. Nicholson, E.D. Crandall, R.M. Du Bois, et al.
Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis.
Am J Pathol, 166 (2005), pp. 1321-1332
[36.]
C.J. Scotton, R.C. Chambers.
Molecular targets in pulmonary fibrosis: the myofibroblast in focus.
Chest, 132 (2007), pp. 1311-1321
Copyright © 2012. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?