Original Article

Association Between Chronic Respiratory Diseases and *Helicobacter pylori*: A Meta-Analysis

Lijie Wang, a,b Yan Guan, b Yan Li, a,b Xiuju Liu, b Yakun Zhang, b Fuxia Wang, a,b Lingling Kong, b Qisen Guo b, ∗

a School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
b Shandong Cancer Hospital, Jinan, Shandong, China

A B S T R A C T

Background: The prevalence of chronic respiratory diseases (CRDs), including chronic bronchitis and chronic obstructive pulmonary disease (COPD), has increased significantly over the past decades. Several studies suggested that *Helicobacter pylori* infection may be related to the development of CRDs, but the results were not consistent. We carried out a meta-analysis to evaluate the potential association of *H. pylori* infection with CRDs.

Methods: We conducted a systematic literature search in PubMed, Embase, Ovid, Google Scholar and CNKI from inception to October 31, 2013. The following search terms were used: “chronic respiratory disease,” “chronic bronchitis,” “chronic obstructive pulmonary disease,” or “COPD” in combination with “Helicobacter pylori” or “Campylobacter pylori.” According to established inclusion criteria, we selected all eligible published papers and then extracted essential data. To evaluate the association of *H. pylori* with chronic bronchitis and COPD, an overall analysis and subgroup analyses were conducted.

Results: A total of 9 case–control studies comprising 782 cases and 815 controls were included in the study. Pooled ORs were 2.30 (95% CI: 1.85–2.85) in the overall analysis, 2.90 (95% CI: 2.04–4.13) in the chronic bronchitis subgroup, and 2.11 (95% CI: 1.35–3.29) in the COPD subgroup.

Conclusions: The results of the overall analysis and subgroup analyzed suggest a significant association between *H. pylori* and CRDs. Further studies are needed to clarify the pathogenetic mechanisms involved.

© 2014 SEPAR. Published by Elsevier España, S.L.U. All rights reserved.

Asociación entre enfermedades respiratorias crónicas y *Helicobacter pylori*: un metaanálisis

RESUMEN

Antecedentes: La prevalencia de las enfermedades respiratorias crónicas (ERC), incluida la bronquitis crónica y la enfermedad pulmonar obstructiva crónica (EPOC), ha aumentado de manera significativa a lo largo de las últimas décadas. Varios estudios han sugerido que la infección por *Helicobacter pylori* puede estar relacionada con la aparición de las ERC, pero los resultados presentados no han sido uniformes. Con el objetivo de evaluar la posible asociación de la infección por *H. pylori* con las ERC, llevamos a cabo el presente metaanálisis.

Palabras clave: Helicobacter pylori
Enfermedades respiratorias crónicas
Enfermedad pulmonar obstructiva crónica
Bronquitis crónica
Metaanálisis

© 2014 SEPAR. Published by Elsevier España, S.L.U. All rights reserved.
Métodos: Realizamos una búsqueda bibliográfica sistemática en PubMed, Embase, Ovid, Google Scholar y CNKI desde su inicio hasta el 31 de octubre de 2013. Los términos de búsqueda utilizados fueron los siguientes: «chronic respiratory disease», «chronic bronchitis», «chronic obstructive pulmonary disease» o «COPD» en combinación con «Helicobacter pylori» o «Campylobacter pylori». Según los criterios de inclusión establecidos, seleccionamos todos los artículos publicados elegibles y extrajimos los datos esenciales. Para evaluar la asociación de H. pylori con la bronquitis crónica y la EPOC se realizó un análisis global y se llevaron a cabo diversos análisis de subgrupos, respectivamente.

Resultados: Finalmente se incluyeron en los análisis un total de 9 estudios de casos y controles en los que se incluyeron 782 casos y 815 controles. La OR combinada fue de 2.30 (IC 95%: 1.85–2.85) para el análisis global, de 2.90 (IC 95%: 2.04–4.13) para el análisis del subgrupo de bronquitis crónica y de 2.11 (IC 95%: 1.35–3.29) para el análisis del subgrupo de EPOC.

Conclusiones: Los resultados del análisis global y de los análisis de subgrupos sugieren una asociación significativa entre H. pylori y ERC. Serán necesarios nuevos estudios para esclarecer los mecanismos patogénicos.

© 2014 SEPAR. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

Introducción

El prevalencia de enfermedades respiratorias crónicas (ERC), incluyendo bronquitis crónica y enfermedad obstructiva pulmonar crónica (COPD), ha aumentado significativamente en los últimos décadas.2 El estudio etiológico de ERC es complejo. Algunos factores de riesgo, como los tabaquismo, el uso de contaminación atmosférica pueden estar estrechamente relacionados con ERC.2-3

Helicobacter pylori, una bacteria spiral, gram-negativa, ha sido implicada en el riesgo de úlceras gástricas y del estómago.4 En estudios previos, la prevalencia de H. pylori se ha asociado con varias enfermedades, como enfermedades del corazón,5 enfermedades pulmonares,6 enfermedades del tubérculo5 y el cáncer de pulmón.6 Sin embargo, no existe un estudio sistemático que analice la asociación entre H. pylori y ERC. Aunque la asociación entre H. pylori y ERC ha sido estudiada en diferentes estudios,7 resultados fueron inconsistentes, con algunos estudios indicando una asociación.8 Y otras sugerencias de una relación.9

Para clariificar la asociación entre ERC y H. pylori, revisamos la literatura y producimos el primer análisis de esta área. La posible asociación puede ampliar nuestro entendimiento de la relación entre ERC y contribuir a su prevención.

Material y Métodos

La búsqueda bibliográfica

Un análisis sistemático fue realizado utilizando la base de datos, con la finalidad de buscar literatura en PubMed, Embase, Ovid, Google Scholar and China National Knowledge Infrastructure (CNKI) desde su inicio hasta el 31 de octubre de 2013. Las palabras utilizadas eran “chronic respiratory disease”, “chronic bronchitis”, “chronic obstructive pulmonary disease” o “COPD”, combinado con “Helicobacter pylori” o “Campylobacter pylori”. Cuando la búsqueda devolvió un artículo en un idioma distinto al inglés, los estudios fueron examinados para su posible inclusión, y los textos completos fueron leídos para obtener cualquier información relevante. Las publicaciones que pudieron resultar ser relevantes fueron analizadas mediante revisión de los títulos y resúmenes. Las textos de los textos completos relevantes para el análisis más detallado fueron seleccionados. Se seleccionaron artículos que pudieron haber sido perdidos en la búsqueda inicial.

Inclusión y Exclusión de Estudios

Los criterios de inclusión de los artículos fueron: (a) la asociación de H. pylori con ERC; (b) la relación de H. pylori y ERC; (c) la relación entre H. pylori y ERC; (d) la relación entre H. pylori y ERC; (e) estudios realizados en el área de ERC y (f) estudios realizados en el área de ERC.
Results

Literature Search and Meta-Analysis Database

Using our search strategy, 369 possibly relevant articles were identified, of which 347 titles were discarded for various reasons after perusal of the titles and abstracts (Fig. 1). The full texts of 22 articles were then obtained for more careful examination. After strict application of the inclusion and exclusion criteria, 9 case-control studies11,12,17-23 were finally selected for inclusion in the meta-analysis. All these articles were in English.

Information extracted from each article was used to create a database that included the following data points: first author, years of publication, number of cases and controls in each study, and number of subjects with positive H. pylori among the cases and the controls. Table 1 shows the quality scores of the studies included. Mean quality was 7.5 stars. All cases had a diagnosis of chronic bronchitis or COPD, according to the following, strictly implemented, diagnostic criteria. Chronic bronchitis was clinically defined as chronic productive cough for 3 months, in at least 2 consecutive years, in a patient in whom other causes of chronic cough were ruled out. If incomplete reversal of airway obstruction was confirmed by spirometry (postbronchodilator forced expired volume in 1 s [FEV1] <80% predicted, along with FEV1/FVC <70%), a diagnosis of COPD was given. Of the studies included, 8 used radioimmunoassay (ELISA) for IgG serological detection of H. pylori11,12,17,18,20-23 and only 1 used the 13C-urea breath test.19 Other necessary data were included in the meta-analysis forest plot (Fig. 2).

Heterogeneity Testing

All data were analyzed for heterogeneity. The I² index was 43%, therefore, a fixed effects model was used to calculate overall OR. Heterogeneity was also analyzed after dividing the data into subgroups. I² index for the chronic bronchitis subgroup, however, was 0%, so the association between chronic bronchitis and H. pylori was analyzed using the fixed effects model. In contrast, the I² index in the COPD subgroup was 54%, so the random effects model was used.

Quantitative Synthesis

To evaluate the possible relation between H. pylori infection and CRD, data were obtained from 9 case-control studies for inclusion in the meta-analysis. A total of 782 cases and 815 controls were included, of which 547 cases and 427 controls were H. pylori-positive, while 235 cases and 388 controls were H. pylori-negative. As shown in Fig. 2, the overall OR was 2.30 (95% CI: 1.85–2.85) and the Z-value for the overall effect test was 7.52 (P<.05).

In view of possible differences between the influence of chronic bronchitis and of COPD on the results, a subgroup analysis was also performed to evaluate the relationship. Four case-control studies with 318 cases and 332 controls18,20,21,23 were included in the chronic bronchitis subgroup, and the other 5 studies, with 464 cases and 483 controls,11,12,17,19,22 were included in the COPD subgroup. The OR for the chronic bronchitis subgroup was 2.90 (95% CI: 2.04–4.13) and the Z-value for the overall effect test was 5.92 (P<.05) (Fig. 3). As shown in Fig. 4, the OR for the COPD subgroup was 2.11 (95% CI: 1.35–3.29), and the Z-value for the overall effect test was 3.30 (P<.05).

Sensitivity Analysis

To compare the difference and evaluate the sensitivity of the overall analysis, the random effects model was also applied. The combined OR and 95% CI for all the studies pooled was 2.40 (95% CI: 1.77–3.26), and the Z-value for the overall effect test was 5.66 (P<.05), similar to the results obtained in the fixed effects model. Likewise, the random effects and fixed effects models were used to evaluate sensitivity and to compare the differences between the subgroup analyses. The results obtained were largely similar.

Bias Assessment

The fail-safe number (Nfs0.05) for the evaluation of meta-analysis reliability is defined as the number of negative results that could overturn significant results. The Nfs0.05 for the overall meta-analysis was 196, suggesting that the results of the overall meta-analysis were almost entirely unaffected by publication bias. Nfs0.05 was also used to evaluate publication bias in the subgroups. The results were between 50 and 44, suggesting very little publication bias in the results of the subgroup analyses.

Discussion

In this quantitative meta-analysis, we examined the possible relationship between H. pylori infection and CRD by analyzing published case-control studies. To the best of our knowledge, this is the first meta-analysis to be published that is evaluating this association.

Our meta-analysis revealed a significant association between H. pylori infection and CRDs. Summary OR was 2.30 (95% CI: 1.85–2.85), and the Z-value for the overall effect test was 7.52 (P<.05), indicating that H. pylori infection may be closely related with CRDs. In view of possible differences between the influence of chronic bronchitis and COPD on the results, a subgroup analysis was also performed, yielding similar results.

Although several previous meta-analyses found no significant association between H. pylori and asthma,7,24 the results of our meta-analysis, evaluating the possible relationship between H. pylori infection and CRD, were positive. This raises the interesting concept that H. pylori is closely associated with chronic...
bronchitis and COPD. Moreover, our results were similar to those reported in meta-analyses that found a close association between *H. pylori* infection and pulmonary tuberculosis or lung cancer.

The pathogenic mechanisms underlying the positive relationship detected between *H. pylori* infection and CRD have not yet been clarified. One theory suggests that the persistent inflammatory airway response induced by mediators released during *H. pylori* infection leads to the development of CRD. Another possible pathogenic mechanism is the increased sensitivity of lung cells and bronchial tissue to external stimulants such as smoke and dust induced by *H. pylori* infection in the lung, thus increasing CRD morbidity.

Our study has several limitations. Firstly, although the results of the case–control studies were quite reliable, they could have been affected by some confounding factors, such as sex, age, socioeconomic level and smoking habit. The initial publications provided only incomplete information on these factors, making it impossible to perform the corresponding subgroup analyses. Secondly, given the limited number of studies and the low sample sizes, results must be interpreted cautiously. Thirdly, only articles published in open access until October 2013 were retrieved, so some published

Table 1

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Type of study</th>
<th>Detection method</th>
<th>Sample</th>
<th>Case HP(+)n</th>
<th>Control HP(+)n</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caselli et al., 1999</td>
<td>Italy</td>
<td>Cases and controls</td>
<td>ELISA (H. pylori IgG)</td>
<td>Serum</td>
<td>49/60</td>
<td>40/69</td>
<td>7</td>
</tr>
<tr>
<td>Jun et al., 2006</td>
<td>China</td>
<td>Cases and controls</td>
<td>ELISA (H. pylori IgG)</td>
<td>Serum</td>
<td>40/46</td>
<td>29/48</td>
<td>8</td>
</tr>
<tr>
<td>Kanbay et al., 2005</td>
<td>Turkey</td>
<td>Cases and controls</td>
<td>ELISA (H. pylori IgG)</td>
<td>Serum</td>
<td>45/68</td>
<td>48/95</td>
<td>7</td>
</tr>
<tr>
<td>Roussos et al., 2005</td>
<td>Greece</td>
<td>Cases and controls</td>
<td>ELISA (H. pylori IgG)</td>
<td>Serum</td>
<td>98/126</td>
<td>69/126</td>
<td>8</td>
</tr>
<tr>
<td>Gencer et al., 2007</td>
<td>Turkey</td>
<td>Cases and controls</td>
<td>ELISA (H. pylori IgG)</td>
<td>Serum</td>
<td>38/49</td>
<td>25/50</td>
<td>7</td>
</tr>
<tr>
<td>Siva et al., 2011</td>
<td>United Kingdom</td>
<td>Cases and controls</td>
<td>ELISA (H. pylori IgG)</td>
<td>Serum</td>
<td>35/64</td>
<td>4/17</td>
<td>8</td>
</tr>
<tr>
<td>Hashemi et al., 2011</td>
<td>Iran</td>
<td>Cases and controls</td>
<td>ELISA (H. pylori IgG)</td>
<td>Serum</td>
<td>32/90</td>
<td>30/90</td>
<td>8</td>
</tr>
<tr>
<td>Pronail et al., 2004</td>
<td>Hungary</td>
<td>Cases and controls</td>
<td>ELISA (H. pylori IgG)</td>
<td>Serum</td>
<td>90/135</td>
<td>110/200</td>
<td>7</td>
</tr>
</tbody>
</table>

ELISA: enzyme-linked immunosorbent assay; HP: *Helicobacter pylori*; Ig: immunoglobulin.

Fig. 2

Meta-analysis with a fixed effects model for the association of *H. pylori* infection and chronic respiratory diseases (CRD).

Fig. 3

Meta-analysis with fixed effect model for the association of *H. pylori* and chronic bronchitis.
or unpublished studies meeting the inclusion criteria may have been omitted. Consequently, some unavailable bias is to be expected, even though the Nsfo.05 did not find any significant publication bias in our study. Fourthly, studies suggest that *H. pylori* Cag A+ seropositivity is more closely related with CRDs than anti- *H. pylori* IgG antibody seropositivity. However, the relationship between *H. pylori* Cag A+ strains and CRD was not evaluated because additional details on Cag A seropositivity were provided in only 3 studies. Fifthly, *H. pylori* seropositivity rates may vary widely, depending on the different detection methods used. In the series included in our study, the 13C-urea breath test was used for the detection of *H. pylori* in only 1 study, while an ELISA method was used in the others.

In conclusion, the results of the overall analysis and subgroup analysis suggest a significant association between *H. pylori* and CRD. Perhaps the time has come to conduct well-designed studies in large series to clarify the pathogenic mechanisms and to answer questions on the effects of eradication treatment on diseases of the respiratory tract.

Funding

This study was funded by Shandong Cancer Hospital.

Conflict of Interest

The authors state that they have no financial or personal relationship with other persons or organizations that might appropriately influence their work and they have no professional or personal interests of any other type, nature or class in any product, service and/or company that could be interpreted as influential in the opinion presented in this article.

Acknowledgment

We thank the Shandong Cancer Hospital.

References