count of $13.6 \times 10^9/l$ (normal values [NV]; 4–11.5 $\times 10^9/l$) with neutrophilia, hemoglobin 10.4 g/dl (NV: 13–18 g/dl) and hematocrit 32.8% (NV: 41%–50%), 959 $\times 10^9/l$ (NV: 130–450 $\times 10^9/l$) platelets and erythrocyte sedimentation rate (ESR) 110 mm/h (NV: <20 mm).

Chest X-ray on admission showed parenchymal infiltrations in the posterior segment of the right upper lobe and apical region of the right lower lobe, with loss of volume and right pleural effusion (Fig. 1a). Thoracocentesis was performed, and purulent fluid was obtained that was sent for culture. Wide-spectrum antibiotic treatment with linezolid and imipenem began and a chest tube was placed, to which fibrinolytics were added: 1500 cc of purulent fluid was drained. Chest computed tomography (CT) was performed (Fig. 1b), showing pulmonary infiltrate, pleural and atelectasis of the lung. Mixed flora were identified on a direct Gram stain of the specimen. Culture of the pleural fluid was positive for A. aphrophilus and P. micra, as identified by mass spectrometry (MALDI-TOF).

On the basis of these results, the antibiotic treatment was scaled down to amoxicillin–clavulanate, which continued for 4 weeks. The patient’s progress was satisfactory with clear improvement of the clinical picture.

Pleurapulmonary infections by A. aphrophilus are uncommon; indeed, since 1965 only 3 cases have been reported. Our case is particularly unusual, due to the concomitant isolation of P. micra: an extensive search of the literature revealed only 1 case in which this microorganism was described as a causative agent of empyema. This is the first report of such a case in Spain.

The initial presentation, radiological pattern and clinical course of our case are indistinguishable from infections caused by other microorganisms. The patient had a history of general decline over several months, along with predisposing factors, such as alcohol abuse and periodontal disease. He responded to standard antibiotic treatment, chest drainage and fibrinolytics.

To conclude, although A. aphrophilus and P. micra may be exceptional, they should be considered as causative agents of pleural infection, particularly in patients with risk factors. The presentation, clinical management and clinical course were no different from empyema caused by more common microorganisms.

References

Santiago Rodríguez-Segade,† David Velasco,‡ Pedro J. Marcos§

† Servicio de Neumología, Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), SERGAS, A Coruña, Spain
‡ Servicio de Microbiología, Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), SERGAS, A Coruña, Spain
§ Corresponding author.
E-mail address: pedro.jorge.marcos.rodrigues@sergas.es (P.J. Marcos).
Schwannoma is a tumor originating in the Schwann cells\(^1\) that surround the peripheral nerve fibers of the nerve roots or peripheral nerves. It accounts for 20% of mediastinal cancers in adults, but 85%–90% of all tumors of the posterior mediastinum are schwannomas. Up to 80% of cases are asymptomatic, and diagnosis in young and middle-aged adults is generally fortuitous. Symptoms, when they occur, are due to local compression of the affected nerve or adjacent structures. Schwannomas are benign, encapsulated and well-delimited 98% of the time, but cases of very aggressive, locally invasive, malignant schwannomas that tend to relapse and metastasize have been described.\(^3\) CT is useful for planning the surgical approach and a definitive diagnosis can be reached using immunohistochemical techniques.\(^4\) Surgical resection via thoracotomy or video-assisted thoracoscopy is the treatment of choice in these neurogenic tumors, and can be considered curative, in view of the low relapse rate.

Conflict of Interests

The authors state that they have no conflict of interests. All the authors have read and approved the final manuscript.

References

Carmen María Rodríguez,* Sara Naranjo, Miguel Carbajo

Servicio de Cirugía Torácica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain

*Corresponding author.

E-mail address: mia.2612@hotmail.com (C.M. Rodríguez).

Fig. 1. (A) Computed axial tomography. Transverse slice of the chest at the level of the aortic arch. Schwannoma (SCH) and aortic arch (AO) can be seen. (B) Image obtained during surgery. Flattened esophagus (E), nasogastric tube (SNG), schwannoma (SCH), rib (CS) and azygos vein (AC).