Publique en esta revista
Información de la revista
Vol. 39. Núm. 6.Junio 2003
Páginas 243-288
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 39. Núm. 6.Junio 2003
Páginas 243-288
DOI: 10.1016/S0300-2896(03)75375-7
Acceso a texto completo
Aplicabilidad de un modelo predictivo de muerte por resección de cáncer de pulmón a la toma de decisiones individualizadas
A model to predict death after lung cancer resection: applicability to individual cases
Visitas
4964
G. Varela??
Autor para correspondencia
gvs@usal.es

Correspondencia: Sección de Cirugía Torácica. Hospital Universitario de Salamanca. P.° San Vicente, 58. 37007 Salamanca. España
, M.F. Jiménez, N. Novoa
Sección de Cirugía Torácica. Hospital Universitario de Salamanca. Salamanca. España
Este artículo ha recibido
4964
Visitas
Información del artículo
Objetivo

Evaluar la fiabilidad de un modelo de regresión logística para predecir el riesgo individual de muerte por resección de cáncer pulmonar (CP)

Método

Estudio de 515 casos consecutivos sometidos a resección pulmonar anatómica (lobectomía o neumonectomía) por CP entre enero de 1994 y diciembre de 2001. La variable dependiente fue la mortalidad hospitalaria o extrahospitalaria en los 30 días siguientes a la intervención; las variables independientes continuas: la edad, el índice de masa corporal y el volumen espiratorio forzado en el primer segundo, en porcentaje del teórico (FEV1ppo), y las variables independientes binarias: cardiopatía isquémica, diabetes mellitus, arritmia preoperatoria, quimioterapia de inducción, tipo de resección realizada (lobectomía o neumonectomía), resección de pared torácica, extensión tumoral (tumor localizado o extendido) y transfusión sanguínea perioperatoria. Todas las variables han sido recogidas de forma prospectiva. Se ha realizado un análisis univariante utilizando tablas de contingencia para las variables binarias y ANOVA para las continuas; posteriormente, se ha efectuado un análisis de regresión logística por pasos hacia atrás y se ha calculado la probabilidad de muerte para cada caso individual. Con este valor se ha construido una curva ROC utilizando como variable de estado la aparición de muerte operatoria

Resultados

En el análisis multivariante, las siguientes variables se han encontrado relacionadas de forma independiente con la mortalidad: edad (p < 0,001; odds ratio [OR]=1,11), extensión tumoral (p=0,002; OR=3,47) y transfusión perioperatoria (p=0,004; OR=3,87). El área bajo la curva ROC es de 0,77, pero esto es debido a una especificidad elevada, ya que ningún caso de complicación pudo ser predicho

Conclusion

Aunque se encuentran algunas variables relacionadas con la muerte operatoria, el modelo descrito no es capaz de predecir la muerte operatoria. Por tanto, la aplicabilidad a la toma de decisiones individualizadas es de escasa utilidad

Palabras clave:
Resección pulmonar
Mortalidad operatoria
Predicción del riesgo quirúrgico
Objective

To evaluate the reliability of a logistic regression model to predict individual risk of death related to lung cancer resection

Method

A study of 515 consecutive patients undergoing anatomical pulmonary resection (lobectomy or pulmonectomy) for lung cancer between January 1994 and December 2001. Dependent variable: death in or out of hospital within 30 days of surgery. Continuous independent variables: age, body mass index, and percent of predicted postoperative FEV1. Binary independent variables: ischemic heart disease, diabetes mellitus, preoperative arrhythmia, induction chemotherapy, type of resection (lobectomy or pneumonectomy), chest wall resection, tumor extension (localized or extended tumor) and perioperative blood transfusion. All data were gathered prospectively. A univariate analysis was performed using contingency tables for binary variables and analysis of variance for continuous ones; stepwise logistic regression analysis was then performed and the likelihood of death for each individual was calculated. A receiver operating characteristic (ROC) curve was constructed with the data, using surgical death as the state variable

Results

The following variables were found to be independently related to death in the univariate analysis: age (p < 0.001, odds ratio 1.11); tumor extension (p=0.002; OR 3.47) and perioperative transfusion (p=0.004; OR 3.87). The area under the ROC curve was 0.77, attributable to high specificity given that none of the complications could have been predicted

Conclusion

Although some variables are related to surgical death, the described model is not able to give a prediction. Therefore, the model is of little use for application in making decisions about individual cases

Key words:
Lung resection
Operative mortality
Surgical risk prediction
El Texto completo solo está disponible en PDF
Bibliografía
[1.]
D.J. Kearney, T.H. Lee, J.J. Reilly, M.M. DeCamp, D.J. Sugarbaker
Assessment of operative risk in patients undergoing lung resection
Chest, 105 (1994), pp. 753-759
[2.]
C.F. Mountain
Revisions in the International System for Staging Lung Cancer
Chest, 111 (1997), pp. 1710-1717
[3.]
J.J. Beilly
Evidence-based preoperative evaluation of candidates for thoracotomy
Chest, 116 (1999), pp. 474S-476S
[4.]
F.J. Moradiellos, J.L. Martín de Nicolás, A. López Encuentra, A. Gómez-Caro, C. Marrón, S. García Barajas
Mortalidad relacionada con la toracotomía en pacientes con carcinoma broncogénico y función pulmonar disminuida
Arch Bronconeumol, 37 (2001), pp. 65
[5.]
J.L. Duque, G. Ramos, J. Castrodeza, J. Cerezal, M. Castanedo, M. Yuste
Early complications in surgical treatment of lung cancer: a prospective, multicenter study
Ann Thorac Surg, 63 (1997), pp. 944-950
[6.]
A. Bernard, C. Deschamps, M.S. Allen, D.L. Miller, V.F. Trastek, G.D. Jenkins
Pneumonectomy for malignant disease: factors affecting early morbidity and mortality
J Thorac Cardiovasc Surg, 121 (2001), pp. 1076-1082 http://dx.doi.org/10.1067/mtc.2001.114350
[7.]
A. Brunelli, A. Fianchini, R. Gesuita, F. Carle
POSSUM scoring system as an instrument of audit in lung resection surgery
Ann Thorac Surg, 67 (1999), pp. 329-331
[8.]
J.r. Harpole DH, M.M. J.r. DeCamp, J. Daley, K. Hur, C.A. Oprian, W.G. Henderson
Prognostic models of thirty-day mortality and morbidity after major pulmonary resection
J Thorac Cardiovasc Surg, 117 (1999), pp. 969-979 http://dx.doi.org/10.1016/S0022-5223(99)70378-8
[9.]
J. Wang, J. Olak, M.K. Ferguson
Diffusion capacity predicts operative mortality but no long-term survival after resection for lung cancer
J Thorac Cardiovasc Surg, 117 (1999), pp. 581-587
[10.]
R.C. Morice, E.J. Peters, M.B. Ryan, J.D. Putnam, M.K. Ali, J.A. Roth
Exercise testing in the evaluation of patients at high risk for complications for lung resection
Chest, 101 (1992), pp. 356-361
[11.]
P. Pinna-pintor, M. Bobbio, S. Colangelo, F. Veglia, M. Giammaria, D. Cuni
Inaccuracy of four coronary surgery risk-adjusted models to predict mortality in individual patients
Eur J Cardiothorac Surg, 21 (2002), pp. 199-204
[12.]
G.L. Grunkemeier, R. Jin
Receiver operating characteristic curve analysis of clinical risk models
Ann Thorac Surg, 72 (2001), pp. 323-326
Copyright © 2003. Sociedad Española de Neumología y Cirugía Torácica
Idiomas
Archivos de Bronconeumología

Suscríbase al Newsletter

Opciones de artículo
Herramientas
es en
Política de cookies Cookies policy
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here.
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?